Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы очистки отходящих газов

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Этилен параллельно подают в реактор 3 прямого хлорирования и в реактор 1 окислительного хлорирования. В реактор 1 подают также хлористый водород (отход со стадии прямого хлорирования этилена) и воздух. Окислительное хлорирование проводят при 200—300 °С в присутствии катализатора. Агрегат 2 предназначен для выделения дихлорэтана, который вместе с дихлорэтаном, полученным в реакторе 3, поступает на очистку в агрегат 4. Агрегат 5 предназначен для крекинга дихлорэтана. Очистку хлористого водорода ведут в узле 6 очищенный газ возвращают в цикл. Очистку винилхлорида ведут в узле 7 выделившийся при этом дихлорэтан тоже возвращают в цикл. [c.108]

    Хим. отрасли пром-сти относятся к отраслям х-ва, оказывающим отрицат. влияние на природу. Одновременно они имеют важное значение для осуществления мероприятий по ее охране в разнообразную гамму хим. продукции входят разл. реагенты, сорбенты, ионообменные материалы, катализаторы и др., к-рые широко используются в системах очистки отходящих газов и сточных вод. На основе достижений хим. науки и произ-ва разработаны и создаются экологически чистые виды топлив (см., напр.. Альтернативные топлива, Водородная энергетика)-, новые электрохим. источники энергии, напр, свинцово-кислотные аккумуляторы для применения на транспорте (в т. наз. электромобилях) методы локализации загрязнений Мирового океана нефтью и нефтепродуктами новые методы опреснения воды (подсчитано, что благодаря эффективному опреснению площади, пригодные для проживания, могут возрасти не менее чем на 20%). Одно из важных ср-в контроля за состоянием окружающей среды - аналит. химия загрязнений. Малоотходные процессы и эффективные методы переработки отходов разрабатывают в н.-и. и проектных организациях в вузах и техникумах хим.-технол. профиля готовят специалистов для решения проблем охраны окружающей среды. [c.437]

    В самом деле, к числу отходов, образующихся в ходе технологического процесса, относятся продукты побочных химических реакций, неполные или, наоборот, чрезмерные превращения сырья, вещества полимеризации или конденсации сырья и промежуточных продуктов, фильтраты, промывные воды, воды от абсорбционных установок очистки хвостовых газов, отработанный воздух окислительных процессов, не полностью вступающие в реакцию газы и др. Отходы могут давать также вспомогательные вещества, применяемые в технологических процессах отработанные катализаторы, адсорбенты, растворители, вода от промывки оборудования и тары, воздух, применяемый для сущки, охлаждения, пневмотранспорта, для продувки осадков на фильтрах, воздух, выделяемый из аппаратов и емкостей при их заполнении, газы, отсасываемые при создании вакуума, невозобновляемая тара, фильтровальные материалы и др. [c.39]


    Газовую серу извлекают из отходящих газов цветной металлургии, газов нефтепереработки, попутных нефтяных и природных газов и др. Таким образом, газовая сера является отходом процессов очистки газов и потому относится к дешевым видам элементарной серы. Однако в газовой сере, получаемой из газов цветной металлургии, содержится большое количество мышьяка и других вредных примесей, вследствие чего в производстве контактной серной кислоты требуется тщательная очистка сернистого газа, образующегося при сжигании газовой серы, перед поступлением его на катализатор, т. е. примерно такая же очистка, как и при работе на колчедане. [c.55]

    Проблема обезвреживания газовых выбросов в производствах поливинилацетатных пластиков не ограничивается очисткой отработанных газов основных производств. Нередки случаи, когда вспомогательное производство является источником выбросов очень токсичных веществ, поэтому газовые отходы этого процесса также необходимо подвергать очистке. Примером такого процесса может служить производство катализатора для синтеза винилацетата. В газовых выбросах этого производства содержится гидразингидрат, обладающий очень высокой токсичностью (ПДК 0,1 мг/м ). [c.166]

    Для повьппения Т. в-во подвергают очистке, добавляют к нему стабилизаторы (см. Стабилизация полимеров), удаляют из атмосферы активные газы. Когда желательно снизить Т., напр, при крекинге углеводородов и пиролизе полимерных отходов, используют металлсодержащие катализаторы. [c.547]

    Окисление органических соединений проводится в газовой и жидкой фазах. На гетерогенных катализаторах окисление олефинов и ароматических углеводородов осуществлено в технике в газовой фазе, а насыщенные и нафтеновые углеводороды селективно окисляются в жидкой фазе. В газовой фазе эти вещества на гетерогенных катализаторах превращаются только в продукты глубокого окисления, что представляет и самостоятельный интерес — как метод очистки атмосферы от промышленных отходов и выхлопных газов автомобилей. [c.12]

    В сельском хозяйстве пытаются применять цеолиты в качестве добавок к кормам и для улучшения действия антибиотиков. Еще одной важной областью применения цеолитов может стать очистка газов, в том числе метана, получаемого из органических отходов. Природные цеолиты могут также служить катализаторами, однако в этом случае предпочтительны эффективные и высококачествен- [c.17]

    Для очистки газа от сернистых органических соединений, отравляющих катализатор синтеза, применяется масса, приготовленная из отходов алюминиевого производства (красный шлам) и соды. Масса загружается в. башни для очистки газа [c.30]

    Газовая сера является отходом процесса очистки газов цветной металлургии, газов нефтепереработки, попутных нефтяных и природных газов и представляет собой дешевый вид сырья. Однако в газовой сере содержатся мышьяк и другие вредные для катализатора примеси, поэтому схема переработки такой серы в серную кислоту примерно такая же, как и схема переработки колчедана. [c.25]

    Термическое взаимодействие метана с водяным паром происходит при 1200—1300°. В присутствии никелевого катализатора взаимодействие становится возможным при 700—800°. Каталитический спозоб, в котором природный газ (в целях предотвращения отравления никелевого катализатора) должен предварительно освобождаться от сернистых соединений, в промышленности уже давно разработан [20].. Грубая очистка предусматривает удаление неорганической серы, главным образом в виде сероводорода. Она происходит над так называемой люкс-массой (окись железа— красный шлам бокситиых отходов) или над бурым железняком при обычной температуре. Тонкая очистка, имеющая целью удаление органической серы в виде сероуглерода или сернистого карбонила, осуществляется над щелочной люкс-массой при температуре 250—300°. [c.28]

    При определении технико-экономических показателей и конкурентоспособности процесса учитывают масштабы будущего про изводства, капитальные затраты наличие, себестоимость и расход сырья, полупродуктов, растворителей, катализаторов расход энергии и воды наличие отходов, сточных вод и бросовых газов, возможность и стоимость их утилизации или очистки общее техническое совершенство процесса, его компактность и возможность укомплектования существующим типовым оборудованием и приборами степень патентной защиты процесса, а также другие факторы. [c.362]

    Недостаток каталитической очистки —образование новых веществ, которые иногда необходимо удалять из газа абсорбционными или адсорбционными методами. Это значительно снижает общий экономический эффект очистки. Выбор того или иного метода очистки от токсичных газов и паров производится с учетом конкретных условий производства. Экономичность очистки возрастает при использовании отходов производства в качестве очистных реагентов (абсорбента, адсорбента, катализатора), а также при регенерации ценных веществ из отходящих газов, например рекуперации паров бензина или других растворителей, регенерации ртути и других металлов и т. п. Как правило, концентрации примесей в промышленных выхлопах малы, а объемы очищаемых [c.267]


    Важнейшие тенденции развития производства серной кислоты контактным способом Г) интенсификация процессов проведением их во взвешенном слое (печи и контактные аппараты КС), применением кислорода, производством и переработкой концентрированного газа, применением активных катализаторов 2) упрошение способов очистки газа от пыли и контактных ядов (более короткая технологическая схема) 3) увеличение мощности аппаратуры 4) комплексная автоматизация производства 5) снижение расходных коэффициентов по сырью и использование в качестве сырья серусодержащих отходов различных производств (газов цветной металлургии, сероводорода, кислого гудрона и т. д.) 6) комбинирование нитрозного способа с контактным путем установки однослойных контактных аппаратов КС для частичного окисления сернистого ангидрида перед башнями нитрозных систем 7) обезвреживание отходящих газов. [c.315]

    Очень много концентрированной серной кислоты затрачивается для очистки нефтепродуктов и в коксохимической промышленности. Она используется также в качестве катализатора для реакций алкилирования. При этом в качестве отходов образуются кислые гудроны. Это — смесь многих веществ, в том числе серной кислоты, воды, углеводородов и других органических соединений. Использование гудронов для получения концентрированной серной кислоты позволяет значительно снизить расход ее в нефтеперерабатывающей промышленности. Разработано много способов утилизации кислых гудронов. Выбор способа зависит в значительной степени от состава гудронов. Из гудронов с большим содержанием серной кислоты можно получать концентрированную серную кислоту или даже олеум. Эти способы основаны на разложении при нагревании до высокой температуры содержащейся в гудроне серной кислоты. Полученный газ перерабатывают контактным способом. [c.145]

    Мухутдинов Р.Х., Самойлов Н.А Глубокое окисление органи-Ч(5ских примесей на железохромовом катализаторе для очистки отходя-ш,их газов // Очистка газовых выбросов н предприятиях различных отраслей промышленности от углеводородор (тезисы докладов Всесоюзной конференции) / ЦИНТИхимнефтемахЦ. М., 1983. С. 99 - 100. [c.236]

    Пиролюзитный метод применяют для очистки отходящих газов после концентратов серной кислоты. Технологическая схема (рис. 1.19) включает башню, орошаемую серной кислотой, и барботеры на рабочих тарелках последних размещен пиролюзит, через который отходят газы, содержащие диоксид серы. Серная кислота, в результате многократной циркуляции выходящая из башни с повышенной концентрацией, после барботеров очищается от катализатора и направляется в узел смешения. [c.113]

    Серьезная проблема удаления газообразных отходов возникает в связи с работой атомных реакторов на жидком горючем. В процессе работы из раствора горючего непрерывно выделяются газообразные продукты деления. К ним относятся изотопы с очень коротким периодом полураспада (и, следовательно, имеющие высокую удельную активность), которые распадаются в твэлах задолго до их переработки. Наиболее удачной иллюстрацией этой проблемы может служить работа опытного гомогенного реактора (НЕТ, или НРЕ-2) в Ок-Ридже. В состав газов, выделяющихся из реакторного горючего, входят пар, дейтерий и кислород как продукты радиолиза воды, а также газообразные и летучие продукты деления. Эта смесь проходит последовательно через ловушку для иода, рекомбинатор воды, конденсатор и ряд колонок, занолненных древесным углем. Ловушка для иода, представляющая собой слой проволочной сетки, покрытой серебром, не является абсолютно необходимой для очистки отходящих газов, поскольку иод эффективно сорбируется древесным углем. Важной функцией ее является защита катализатора в рекомбинаторе от отравления иодом. В рекомбинаторе продукты радиолиза превращаются в водяной пар, а небольшой поток кислорода увлекает криптон и ксенон в колонки с древесным углем, в которых не происходит улавливания газов, но их прохол< дение замедляется до такой степени, что короткоживущие изотопы распадаются еще до того, как смогут выйти наружу. Единственным радиоактивным элементом, достигающим выпускной трубы, является Кг . [c.322]

    Природный газ проходит сепаратор 7 для отделения жидких углеводородов, сжимается турбокомпрессором2до 28—30ат и подогревается в подогревателе 3 за счет сжигания в межтрубном пространстве природного газа. Последующую очистку проводят в две стадии. В аппарате 4 при 380—400 °С осуществляется каталитическое гидрирование органических соединений серы до сероводорода (водород или подходящий по условиям процесса водородсодержащий газ вводят перед подогревателем 3). В адсорбере 5 при температуре 360°С сероводород поглощается адсорбентом на основе окиси цинка (объем катализатора и поглотителя должен обеспечивать срок службы, определенный для катализатора синтеза метанола, или быть больше его). В избранных технологических условиях достигается высокая степень очистки. Очищенный газ подают на конверсию в трубчатую печь 6 в газ предварительно вводят необходимое количество водяного пара и двуокиси углерода. Температура паро-газовой смеси повышается в подогревателе трубчатой печи за счет тепла дымовых газов до 530—550 °С подогретый газ направляется непосредственно на катализатор в реакционные трубы. Процесс паро-углекислотной конверсии проходит при давлении до 20 ат. Тепло, необходимое для конверсии, получается в результате сжигания отходов производства или природного газа в специальных горелках. Тепло дымовых газов, имеющих температуру выше 1000°С, используют для подогрева паро-газовой смеси, получения пара высокого давления в котле-утилизаторе, подогрева воды, питающей котлы, и топливной смеси перед подачей ее в горелки трубчатой печи 6. Охлажденные до 200—230 °С дымовые газы выбрасываются в атмосферу или частично направляются на выделение двуокиси углерода. [c.85]

    Lux mixture люксмасса (отход производства А1(0Н)з из боксита, содержащий 51% FejOg, известь и древесные опилки масса для очистки газов и носитель катализатора) [c.642]

    Эиергохим. переработка дре веси и ы-газифика-ция древесины в газогенераторах или в топках-генераторах с выделением уксусной к-ты, древесной смолы и др. в процессе очистки газа. Очищенный газ применяют для сжигания в топках котельных или в двигателях внутр. сгорания. Энергохим. переработка позволяет использовать древесные отходы любых пород и любой формы вплоть до лесосечных отходов. Эффективность газификации древесины можио повысить в присут. катализаторов при высоком давлении с получением преим. алканов С2-С5. [c.587]

    Испытание промышленных катализаторов 481-Си, 481-7п и производственных отходов — сланцевой золы и колчеданного огарка химкомбината Маарду показало, что на этих материалах сланцевый бытовой газ, содержащий в среднем 230 мг нм сера-органичюких соединений, очищается на 80—90%, что достаточно для последующей его переработки. Содержание сераорганических соединений в газе после ката.литической очистки снижается до [c.158]

    Направление научных исследований аналитическая химия рентгеноструктурный анализ неорганических соединений газовая хроматография высокомолекулярных соединений биохимические методы анализа дифференциальный термический анализ спектральный анализ при высоких температурах экспресс-анализ жирных кислот и глицеридов изучение параметров, характеризующих взрыв газов при высоком давлении, способы предотвращения взрывов испытание воздействия трения и удара на взрывчатые вещества техника безопасности в химической промышленности промышленные сточные воды и жидкие отходы и их использование анализ алкилбензолсульфонатов опреснение морской воды методами испарения, конденсации, охлаждения и ионообмеиа промышленные катализаторы, механизм каталитических реакций восстановительно-окислитель-ные катализаторы регенерация катализаторов получение монокристаллов окиси магния очистка хлора красители для искусственного меха фосфорная кислота и ее производные фосфорные удобрения ингибиторы полимеризации циановой кислоты усовершенствование технологии производства нитроглицерина методы предотвращения коррозии изоляционные огнестойкие материалы клеи на основе рисового крахмала. [c.375]

    Краткое описание. Современные требования ресурсосбережения диктуют необходимость ра-и ионального использования всех видов отходов и побочных продуктов производства. Особое значе-н ие эта проблема имеет для газоперерабатывающих производств, работающих на сернистом сырье, твердые отходы которых содержат токсич-н ые смолы, углерод и сернистые соединения. Суть сэвременной технологии по обезвреживанию и регенерации отработанных сорбентов и катализаторов заключается в термической регенерации отработанных сорбентов. Температура процесса мо-х ет изменяться в широких пределах от 350 до 1200 °С. Регулируется состав газовой среды - от окислительной до восстановительной. Имеется возможность подачи водяного пара, инертных газов и других активных агентов, способствующих реактивации. Регулируется время нахождения сорбента в активной зоне. Предусмотрено фрак-I ионирование регенерированных сорбентов. Отработанный активированный уголь, прошедший обработку на данной установке, полностью восстанавливает свои первичные свойства и может г овторно быть использован в процессах очистки [c.51]


Смотреть страницы где упоминается термин Катализаторы очистки отходящих газов: [c.289]    [c.35]    [c.151]    [c.14]    [c.10]    [c.17]    [c.588]   
Смотреть главы в:

Технология катализаторов -> Катализаторы очистки отходящих газов




ПОИСК





Смотрите так же термины и статьи:

Катализатор газов

Катализаторы очистка газа

Очистка газов отходящих газов

Очистка катализаторов



© 2025 chem21.info Реклама на сайте