Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение газовых потоков

    ОПРЕДЕЛЕНИЕ ГАЗОВЫХ ПОТОКОВ [c.58]

    Наряду с длиной важное значение имеет свободное поперечное сечение капиллярной трубки. Однако эта величина может быть определена только на концах трубки, и нельзя быть уверенным в постоянстве поперечного сечения по всей длине капилляра. Кроме отклонений, получающихся в процессе протягивания, поперечное сечение может быть уменьшено наслоениями грязи, частичками окислов и угля. Поперечное сечение меньше также в местах сгибов, на отдельных сплющенных участках капилляра. Некоторый эффективный диаметр капилляра можно найти по перепаду давления, необходимому для получения определенного газового потока. Поэтому для оценки капиллярных колонок используют законы течения газов в трубках. [c.317]


    Характерно также, что в США нет типовых газофракционирующих установок. Каждая установка проектируется и строится с учетом определенных газовых потоков. Отбор целевых компонентов Сз—С весьма высок и составляет 94—99% от потенциала. На многих НПЗ наряду с фракциями Сз—С5 извлекают этан-этиленовую фракцию. Из полученного этана получают самый дешевый этилен. Основными промышленными методами газоразделения в США являются низкотемпературные абсорбция и ректификация при большем удельном весе первого метода. Абсорбционные процессы протекают нри пониженном молекулярном весе абсорбента (до 180 и ниже), при температуре, близкой к О и даже ниже, для чего предусматривается пропановый или аммиачный холодильный циклы при довольно высоких давлениях, а также при большой циркуляции абсорбента. [c.257]

    Коэффициент проницаемости для данной системы полимер — пермеат получают приращением потока газа или пара при перепаде давлений на мембране Арь Для определения газового потока используют концентрационные [3—6], объемные [7—9] и вакуумные [10—И] методы. Разделение коэффициента проницаемости на диффузионный коэффициент и коэффициент растворимости выполняется с использованием методов, Дайнеса [И] и Баррера [12] для определения времени запаздывания. [c.29]

    Известно, что интенсивный отвод продуктов реакции из рабочей камеры способствует ускорению химического процесса и даже смещению термодинамического равновесия реакции в сторону образования конечных продуктов. В связи с этим, казалось бы, для интенсификации процессов химико-термической обработки следовало бы создать определенный газовый поток возле насыщаемой поверхности, обеспечивающий наибольшую скорость роста диффузионного слоя. Однако, как показали расчеты и опыты, это привело бы к значительному расходу исходной газовой среды и неэкономичности прямоточного метода. В настоящее время прямоточный газовый метод широко применяется для процессов азотирования и цементации стали, но скорости газовых потоков в соответствующих установках весьма малые. [c.8]

    Общим для всех месторождений газовой промышленности является многокомпонентность пластового флюида и обязательное присутствие влаги при этом метан, как правило, превосходит по объему любой из компонентов. Поэтому основным товарным продуктом газовой промышленности было принято считать топливный газ высокого давления, транспортируемый к местам потребления по магистральным трубопроводам, а основной задачей— подготовку газа к дальнему транспорту. Она заключается в удалении из газовых потоков механических примесей, воды и газоконденсата, до установленных точек росы, и корродирующих токсичных компонентов. Современная постановка задачи требует рассматривать любое месторождение как источник не только газообразного топлива, но и разнообразного сырья вне ависимости от его объема. В этом случае не отдается предпочтения ни одному из возможных продуктов, проблема смещается в область формирования номенклатуры и качества товарных продуктов на основе потребностей народного хозяйства и рациональной доставки их потребителям. Доминирующее значение при определении качества товарных продуктов приобретают не требования системы транспорта и наличные возможности производства, а требования потребителей товарных продуктов. [c.136]


    На основе метода структурного совершенствования систем контроля разработана система типа Сага для автоматического определения содержания двуокиси углерода в воздухе производственных помещений. Система состоит из устройств индикации и переключения газовых потоков, подачи газа, измерения, программного устройства, устройств преобразования, контроля и коррекций п сигнализации.  [c.270]

    При низкой скорости газа или паров не наблюдается заметного перемешивания частиц в слое катализатора, но как только скорость газового потока достигнет определенного значения образующие слой частицы начнут отделяться друг от друга и энергично перемешиваться. Такой слой катализатора с довольно четко обозначенным уровнем взвешенных в газе твердых частиц напоминает кипящую жидкость. Эту смесь, состоящую из катализатора и газа (или пара), можно подобно жидкости легко перемещать из одного аппарата в другой. [c.122]

    На установках первичной переработки нефти достигнута высокая степень автоматизации. Так, на заводских установках используют автоматические анализаторы качества ( на потоке ), определяющие содержание воды и солей в нефти, температуру вспышки авиационного керосина, дизельного топлива, масляных дистиллятов, температуру выкипания 90 % (масс.) пробы светлого нефтепродукта, вязкость масляных фракций, содержание продукта в сточных водах. Некоторые из анализаторов качества включаются в схемы автоматического регулирования. Например, подача водяного пара в низ отпарной колонны автоматически корректируется по температуре вспышки дизельного топлива, определяемой с помощью автоматического анализатора температуры вспышки. Для автоматического непрерывного определения и регистрации состава газовых потоков применяют хроматографы. [c.12]

    После окисления определенной доли первоначального количества кокса при высоких температурах (900-1200"С) скорость процесса начинает меняться со временем, что, очевидно, является следствием изменения кинетического режима [3,48]. Экспериментальными данными подтверждено, что в этих температурных условиях реакция окисления кокса протекает во внешнедиффузионной области увеличение диаметра зерна кокса (следовательно, уменьшение внешней поверхности зерна), скорости газового потока и концентрации кислорода в газе приводят к увеличению скорости окисления кокса, а рост температуры, хотя и увеличивает скорость реакции, влияет на нее слабо. [c.75]

    Соотношения (IV.25) и (1У.26) могут быть использованы для определения медианного и максимального диаметров капель жидкостей при условиях, аналогичных условиям распыливания жидкостей, для которых М. С. Волынским получены эти соотношения давление газового потока р=0,8- -3 кгс/см температура /г= = 10- 100°С температура впрыскиваемой жидкости /ж— =5 40°С скорость жидкости ы=27- 120 м/с коэффициент поверхностного натяжения жидкости сГж=0,002- - [c.87]

    Наиболее простыми по устройству являются односекционные барботажные аппараты для взаимодействия газа (пара) с жидкостью, либо двух жидкостей, либо газа (жидкости) с зернистыми твердыми веществами. Эти аппараты применимы в случаях, когда для протекания процессов тепло- и массообмена и химических реакций достаточно одного контакта восходящего потока с одним слоем жидкости или твердого вещества. Для ускорения протекающих процессов эти аппараты часто снабжаются механическими, инжекционными, газлифтными, пульсационными и вибрационными перемешивающими устройствами. Они способствуют гомогенизации жидкой среды или зернистого материала, росту межфазной поверхности, а также интенсивности межфазного н внешнего массо- или теплообмена. В рассматриваемых аппаратах, работающих обычно в периодическом режиме, достигаются практически полное перемешивание барботируемой среды (жидкости) и определенная степень перемешивания газового потока. [c.15]

    Такие явления, как гидравлический удар, внезапное падение давления, могут быть вызваны тем, что в незакрепленном, провисающем трубопроводе скапливается жидкость. Скорость газового потока в этом месте возрастает, и в определенный момент возможен выброс жидкостной пробки. В зимнее время жидкость может замерзнуть и перекрыть большую часть сечения трубопровода. Возможны и другие неполадки, вызванные отсутствием креплений. Поэтому с самого начала прокладки трубопроводов важно позаботиться о возможности их надежного закрепления. Прежде всего необходимо на- [c.208]

    Верхняя секция — над тарелкой — предназначена для разделения прореагировавших фаз. Здесь имеется уровень раздела фаз и газовое пространство. Последнее тоже не закоксовывается, но уже по другим причинам из-за низкого содержания в газах кислорода, в основном вовлеченного в реакции окисления в нижней секции, и вследствие низкой температуры в секции сепарации, что достигается подачей холодного сырья в эту секцию. Оптимально высокие температуры для реакций окисления в нижней секции и оптимально низкие для сепарации фаз в верхней поддерживаются также определенной организацией потоков газожидкостного из нижней секции в верхнюю через тарелку и жидкостного из верхней секции в нижнюю через сливной карман. [c.137]


    Для промышленных условий большое значение имеет динамическая активность цеолитов по парам воды, устанавливаемая при пропускании потока газа, содержащего влагу, через слой цеолита определенной высоты. Повышение температуры в адсорбенте приводит к снижению его динамической активности. На адсорбционную способность цеолитов повышение температуры оказывает меньшее действие, чем на адсорбционную способность силикагеля или алюмогеля. При увеличении скорости газового потока или при повышении давления адсорбционная способность цеолитов падает меньше, чем других адсорбентов, в частности силикагеля. В связи с этим они могут быть успешно использованы в процессах разделения воздуха, синтеза аммиака, осушки водорода и т. д. [c.109]

    Прежде чем вычислить коэффициенты излучения газового потока, найдем вспомогательные параметры для определения степеней черноты углекислоты есо . водяных паров ен о и поправочного коэффициента С- [c.322]

    В литературе приводится ряд зависимостей для определения коэффициентов массоотдачи на тарелках различных конструкций. Однако большинство их получено путем обобщения экспериментальных данных по абсорбции и десорбции газов и испарению жидкостей в газовый поток. В ряде работ показано, что с достаточной степенью приближения эти данные можно использовать для определения коэффициентов массоотдачи процессов ректификации бинарных систем, для которых мольные теплоты испарения компонентов приблизительно равны. В частности, для тарелок барботажного типа рекомендуются [14] обобщенные критериальные уравнепия типа (VI.39), которые приводятся к удобному для расчетов виду  [c.132]

    ОПРЕДЕЛЕНИЕ СКОРОСТИ ГАЗОВОГО ПОТОКА [c.150]

    Для удовлетворительного распределения газового потока необходимо соблюдать определенное соотношение между гидравлическими сопротивлениями слоя и решетки. Минимально допустимое гидравлическое сопротивление решетки АР может быть вычислено по формуле [c.171]

    Имеется мало надежных сведений о размерах пузырей, возникающих в данном слое при определенной скорости газового потока вследствие сложности получения точных данных и отсутствия в настоящее время действительно полноценной теории. Как уже сказано ранее, наблюдение пузырей связано с большими экспериментальными трудностями. Задача еще усложняется необходимостью обобщения широкой совокупности многочисленных параметров, полученных при измерении пузырей различных размеров. [c.136]

    Для определения количества твердых частиц, вовлеченных в движение газовыми пузырями, был предложен еще один метод Согласно модели противотока с обратным перемешиванием, существует критическое значение скорости газового потока, необходимее для его обратного перемешивания. За критическую принимают такую скорость газа, при которой непрерывная фаза движется вниз между пузырями со скоростью газа в просветах между частицами непрерывной фазы. [c.281]

    Порозность плотной фазы псевдоожиженных газом систем, вполне определенная для данного материала и каждой скорости газа, может изменяться в диапазоне от 0,35 до 0,70 — в зависимости от химической природа, плотности, формы, гранулометрического состава и состояния поверхности твердых частиц i. При переходе от тяжелых сферических частиц к легким угловатым значения umf изменяются от 0,35 до 0,55 для последних материалов наблюдается дальнейшее увеличение порозности при возрастании скорости газа от Umf до значения, соот ветствующего образованию пузырей когда порозность Еть достигает 0,7. Это является следствием сложного воздействия на твердые частицы сил тяжести, трения газового потока, сцепления и адгезии [c.567]

    Анализ имеющихся опытных данных показывает, что в диапазоне 1 <.11111 1 <4 отношение Qe/AQ примерно пропорционально первой степени H f, возрастая с уменьшением н. Отмечается также определенное влияние размера твердых частиц увеличение 6 в 2 раза сопровождается повышением Qg в 3—4 раза. На рис. ХУ-1, б приводится корреляция данных по истечению газа под напорами до 10 кПа ( 1000 мм вод. ст.). Данные, относящиеся к напорам до 50 кПа (5000 мм вод. ст.), обнаруживают заметное отклонение от коррелирующей прямой, особенно — при значениях QJ [Ад 2gH f) ] около 4. Как и при истечении твердых частиц, корреляция для газового потока через круглые отверстия справедлива при истечении через щелевые и квадратные отверстия. [c.572]

    Анализируя уравнение (XV,10), необходимо иметь в виду, что газовый поток относительно твердых частиц вблизи отверстия для некоторых материалов и определенных отверстий находится в переходной области между ламинарным и турбулентным режимами. Возможно, именно поэтому данные по истечению при высоких напорах, соответствующие, следовательно, повышенным относительным скоростям газа, отклоняются от корреляции, основанной на законе Дарси. [c.575]

    В работе [7] изучалось изменение массы шариков нафталина при продувании через них воздуха. Скорость испарения нафталина связана со скоростью газового потока, поэтому различие массы шариков в разных зонах указывает на различие скоростей потока. Такой метод использован, в частности, в работах А. И. Скобло [3] для определения поля скоростей в движущемся слое шариков. [c.113]

    Уравнение (И, 276) отличается от (11, 271) обратным отношением удельных весов, что не может отразиться на энергетическом смысле этих равенств. Поэтому параметр Ф может быть определен как аналог кинетической энергии жидкостного и газового потока в двухфазной системе. [c.166]

    Свойства и чистота любого жидкостного потока оговариваются контрактом. При сжижении природного газа (полном или частичном) всегда контролируются давление, температура и состав потоков с целью получения необходимого количества жидкостей определенного состава. Температура контролируется (иногда косвенно) путем подвода или отвода тепла, концентрация (поддержание концентрации) — за счет применения адсорбирующей поверхности или контакта газового потока с соответствующим количеством жидкости определенного типа, которая способствует конденсации углеводородов. [c.13]

    В заключение подчеркнем, что методика расчета любой вакуумной скстемы, в ТОМ числе и более сложной, например с несколькими параллельно работающими насосами, основывается на составлении баланса газовых потоков и-определении газового потока, удаляемого средством откачки. [c.408]

    Уравненио (57) выведено применительно к неподвижному слою катали.затора. При определении потерн напора в движущемся слое уравнение (57) применимо ири условии, что под скоростью движения потока следует понимать относительную скорость. В случае противоточного пли прямоточного дви/кения газового потока и катализатора [c.65]

    В способе Лимона отложение кокса повидимому устраняется автоматическим ходом операции. Однако содержание диолефинов в бензине Лимона выше, чем в бензине, лол ученном по способу Джайро. Это обнаруживается при определении чисел смолообразования обоих бензинов. В процессе Нокса также образуется кокс, однако он мелко раздроблен и не оседает в реакционной камере. Он полностью увлекаеися в струббер, /рде чaJ гь загружаемого масла, цроте-каюш,ая навстречу газовому потоку, постоянно отмывает его. [c.302]

    Обсудим проблему селективности процесса в полимерных мембранах. Столь большое число факторов, влияющих на проницаемость чистых газов, очевидно, скажется на селективности процесса. При разделении газовых смесей в общем случае необходимо учитывать взаимное влияние диффузионных потоков компонентов в мембране, при этом основные сорбционные и диффузионные характеристики процесса оказываются сложной функцией состава газовой смеси. Небольшая примесь сильно-сорбируемого компонента, который отличается специфическим взаимодействием с веществом матрицы мембраны или одним из прочих компонентов смеси, может радикально изменить проницаемость всех компонентов, поэтому принцип аддитивности при определении общего потока через мембрану и оценку селективности процесса на этой основе следует проводить с большой осторожностью. Тем не менее воспользуемся указанным принципом для выявления некторых закономерностей разделения. [c.104]

    Расчет процесса разделения смеси в мембранном модуле представляет сопряженную задачу, включающую решение системы уравнений, неразрывности, движения и диффузии (4.1ч-4.4) в напорном и дренажном каналах, которые взаимосвязаны граничными условиями в форме уравнений проницания (4.5- -4.8). Следует учесть, что скорость отсоса (вдува) и селективность мембраны являются функцией термодинамических и гидродинамических параметров газовых потоков, меняющихся вдоль канала и зависящих от выбранной схемы движения в мембранном модуле. Кроме того, в определенных условиях возможно возникновение свободной конвекции вследствие концентрационной неустойчивости диффузионного погранслоя. Численное решение системы дифференциальных уравнений весьма громоздко и в ряде случаев основано на существенных упрощениях реальной физической картины, например, не учитывается продольная диффузия и свободная конвекция. Процедуру вычислений можно упростить, если использовать одномерные уравнения расхода, импульса и диффузии (4.18), (4.21) и (4.29) и обобщенные законы массообмена, изложенные выше. [c.150]

    В нефтехимической промышленности при гидрировании углеводородного сырья часть циркулирующего газового потока (продувочные газы) периодически или непрерывно выводят из системы. Цель этой операции—вывод из цикла инертных газов для поддержания на определенном уровне концентрации водорода в реакционной смеои. Применение мембранных газоразделительных установок позволяет утилизировать водород из этих газов, одновременно повысить концентрацию водорода в колонне гидрокрекинга и, как следствие, увеличить скорость процес- [c.281]

    Можно считать, что движение твердых частиц происходит только в результате действия сил лобового сопротивления, возникающих при обтекании их потоком газа. Согласно определению величина этих сил имеет тот же порядок, что и сила тяжести. Следовательно, если изменяется локальная скорость, то частицы вынуждены двигаться пли должно прекратиться псевдоожижение. Значит, если в газовом потоке возникла бы крунномасштаб-ная или вихревая турбулентность, то это соответственно привело бы к хаотическому движению твердых частиц. Однако было установлено, что такое движение отсутствует (возможно, за исключением систем с очень мелкими частицами). Изображение на фото 1У-27 не должно вызывать удивления, хотя его детальная интерпретация требует более серьезного подхода, чем это кажется первоначально. Траектория газа не является линией тока. [c.158]

    При постепенном увеличении расхода газа через многоэлементное распределительное устройство с расположенным над ним слоем зернистого материала часть элементов начинает работать сразу после превышения скорости, необходимой для начала псевдоожижения в расчете на все сечение распределительной решетки (см. рис. Х1Х-4). Дальнейшее увеличение газового потока приводит к тому, что в определенный момент рабочий режим будет характерен для всех элементов соответствующую этому моменту среднюю скорость газового потока (в расчете на сво-боднсге сечение аппарата) обозначим С/,., Если теперь постепенно уменьшать расход газа, то при достижении некоторой критической скорости часть элементов начнет переходить от рабочего [c.687]

    Исследуем, например, используя уравнение (IX.16), процесс регенерации алюмосиликатных катализаторов. Установлено [1], что при температурах выше 500 °С и при содержании кокса на катализаторе выше 3% этот процесс протекает во внутридиффузионной области. Характеристики алюмосиликатных катализаторов достаточно хорошо известны. Так, с = 1.05 Дж/(г-град) Л эф определен в ряде работ, в том числе в работе [7], и может быть принят равным 4-10 см с плотность катализатора у = = 1,1 г/см коэффициент теплоотдачи от катализатора к газовому потоку — 840 кДж7(м /ч град) [8]. Величины д и р в наших расчетах были выбраны из условия, что для окисления 1 моля кокса требуется 1 моль кислорода и при этом выделяется тепло в количестве 400 900 Дж. [c.301]

    На нефтеперерабатывающих и нефтехимических иредприятиях имеются газовые потоки, которые используют в технологических процессах. Это — газы пиролиза, которые, как правило, направляют для разделения на отдельные компоненты при отрицательных температурах циркулирующий водородсодержащий газ, используемый на установках риформинга инертный газ, применяемый прн регенерации катализаторов риформинга, и др. Все эти газовые потоки содержат влагу, которая приводит к определенным затруднениям при эксплуатации технологических установок. [c.286]

    Доказа ю, что полупериод существования метильных радикалов составляет 0,006 сек. Если пропускать газовый поток с определенной с коростью через достаточно длинную трубку, то можно на1 ти в трубке такую точку, где холодное зеркало не будет исче-затз, т. е. эта точка настолько далека от места разложения тетра-мет илсвинца, что образовавшиеся метильные радикалы, не дойдя до холодЕого зеркала, рекомбинируются в молекулы. [c.425]

    Шлам или другие отходы подают в печь через загрузочное отверстие, расположенное обычно в верхней части печи. Вращающийся вал с гребками передвигает материал сверху вниз, с пода на под по спиральной траектории, навстречу газовому потоку. Время пребывания отходов в печи определяется конструкцией гребков и скоростью вращения вала. На каждом поду установлен термодатчик, и требуемая температура поддерживается регулированием горелки и определенным режимом подачи воздуха. [c.141]

    Цель большинства процессов переработки природных газов — извлечение определенных компонентов из газовых потоков. Любой процесс переработки осуществляется при постоянном контроле давления, температуры и соотношения между паровой и жидкой углеводородными фазами. При проектировании установок переработки газа или составлении спецификаций необходимо учитывать условия начала кипения и температуру конденсации продуктов, а такж поведение системы пар—жидкость в любой точке внутри фазовой оболочки. Расчеты обычно основываются на допущении равновесного состояния между фазами, т. е. такого состояния, при котором состав жидкости и пара, находящихся в контакте между собой, с течением времени не изменяется. В тех случаях, когда время контакта фаз недостаточно для установления равновесия, применяются различного рода коэффициенты, которые учитывают зависимость процесса от времени. Понятие равновесия не применимо для статических систем, так как скорости испарения и конденсации молекул в таких системах одинаковы и состав фаз практически не изменяется. [c.43]


Смотреть страницы где упоминается термин Определение газовых потоков: [c.269]    [c.14]    [c.114]    [c.659]    [c.93]    [c.182]    [c.241]   
Смотреть главы в:

Промышленная очистка газов -> Определение газовых потоков




ПОИСК







© 2025 chem21.info Реклама на сайте