Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зародыши кристаллов образование

    Процесс кристаллизации начинается с выделения из пересыщенного раствора мельчайших частиц кристаллизующегося компонента — зародышей кристаллов. Они способны расти, причем рост кристаллов происходит преимущественно на острых углах первоначальных зародышей. При достижении достаточной концентрации кристаллов происходит их сращивание с образованием кристаллической сетки, ячейки которой иммобилизуют оставшуюся не застывшей жидкость. [c.251]


    Титановый полиизопрен состоит из золь- и гель-фракций. В серийном каучуке, полученном в алифатических растворителях, средняя молекулярная масса золь-фракций равна (1,2-ь1,5) 10 , а содержание гель-фракции составляет 20—30%- При использовании ароматических растворителей содержание геля ниже и он характеризуется более рыхлой структурой. Под влиянием сдвиговых напряжений, возникающих в процессе технологической обработки каучука, гель-фракция с рыхлой структурой может полностью разрушаться. Плотный гель остается в полимере и ведет себя как наполнитель. Сам по себе плотный гель кристаллизуется быстрее, чем исходный каучук и золь-фракция, в то же время с повышением содержания гель-фракции в каучуке полупериод кристаллизации его вначале уменьшается, а затем возрастает. Такой характер влияния геля объясняется, с одной стороны, ускорением образования зародышей кристаллов и, с другой стороны, уменьшением подвижности цепей и нарушением их структуры при большом содержании геля [23]. [c.207]

    Отложения солей — это процесс выпадения в осадок, главным образом, малорастворимых неорганических солей Са, Ва, 5г и др., протекающий вследствие пересыщения раствора по отношению к данной соли. Образование твердой фазы происходит, когда радиус зародышей кристаллов превышает критическое значение, определяемое по формуле [c.231]

    Первичное образование зародышей кристаллов зависит от характера вещества и внешних условий. К этим условиям в растворах, содержащих кристаллизующиеся углеводороды, относятся растворимость последних при данной температуре и степень насы- [c.131]

    В настоящее время металлурги [17, 56, 158] объясняют образование и развитие зародышей кристаллов в металлах их электрическими свойствами, а направление сцепления и роста кристаллов— действием электростатического взаимного притяжения между ионами и электронами (или протонами). [c.54]

    Процесс кристаллизации состоит из двух стадий — образования зародышей кристаллов и роста кристаллов. [c.513]

    Ниже приведены способы воздействия ка процессы образования и роста зародышей кристаллов парафинов, которые могут быть объяснены с позиции классической теории гетеро-фазной флуктуации и реализованы ка практике в технологических процессах, связанных с массовой кристаллизацией в больших объемах. [c.12]


    На скорость кристаллизации оказывает влияние ряд факторов степень пересыщения раствора, его температура, образование зародышей кристаллов, интенсивность перемешивания, наличие примесей и др. [c.634]

    Фильтруемость осадка зависит от размеров его частиц, которые в свою очередь определяются соотношением двух факторов скорости образования зародышей кристаллов и скорости роста кристаллов. [c.197]

    При образовании осадка происходит разделение фаз, поэтому этот процесс подчиняется законам, аналогичным законам конденсации малых капель из парообразной фазы или появлению пузырьков паров при кипении жидкости. Во всех случаях первично образующиеся частицы новой фазы очень малы (<С1 нм), а отношение их поверхности к объему и, следовательно, свободная поверхностная энергия велики, т, е. химический потенциал, а также и активность высокодисперсной фазы выше, чем твердой фазы. Иначе говоря, константа равновесия фазовых переходов зависит от степени развития поверхности фаз. Для процесса образования осадка это означает чем меньше радиус образующихся зародышей кристаллов, тем больше произведение растворимости, и следовательно растворимость. Растворимость Lr зародышей и их радиус г связаны между собой следующим соотношением (по аналогии с уравнением для давления паров малых капель)  [c.198]

    Первая возможность отпадает, так как существует очень малая вероятность одновременных соударений большого числа ионных пар (примерно 10) в одном и том же месте. Во втором случае всегда необходимы два соударения, что во много раз вероятнее. Отсюда вытекает вывод, что большие зародыши растут за счет малых или за счет растворенного вещества. Этот процесс подобен изотермической дистилляции маленьких капель. В принципе невозможно образование центра кристаллизации в результате соударения двух частиц, так как энергия при этом должна складываться из энергии образования и относительной кинетической энергии обеих соударяющихся частиц, т. е. значение энергии больше, чем нужно для образования связей, поэтому зародыш тотчас же распадается. Зародыш кристалла может образоваться, если избыточная энергия свое- [c.199]

    По данным ряда исследователей, величина кристаллитов очень мала и не выходит за пределы 4—10 элементарных кристаллических ячеек. В подходящих температурных условиях размеры кристаллитов могут увеличиваться до образования зародышей кристаллов. [c.197]

    При фазовой поляризации, обычно сопровождающей процесс выделения металлов, наиболее мед,пенной стадией, лимитирующей скорость процесса, является образование зародышей кристаллов. При фазовой поляризации (см, рис. 173) зависимость логарифма плотности [c.404]

    Метод декорирования заключается в том, что на поверхность (обычно свежий излом) конгломерата или монокристалла способом вакуумного распыления наносится небольшое количество вещества, не образующего с исследуемым материалом химического соединения. В результате напыленное вещество, количество которого обычно меньше, чем нужно для образования сплошной моно-молекулярной пленки, концентрируется только на активных участках поверхности объекта (дефектах, узлах и т. п.), образуя зародыши кристаллов и делая эти участки видимыми ( декорируя их). Наиболее широкое распространение получило декорирование минералогических объектов золотом. Последовательность операций при декорировании, например, конгломерата каолинита следующая конгломерат разламывают в руках для обнажения свежей поверхности, один из кусочков материала помещают в вакуумную установку и нагревают до 300—450°С в течение 15—30 мнн для очистки поверхности от примесей и приставших частиц через несколько минут после прекращения нагрева без нарушения вакуума производят распыление золота, а затем на поверхность наносят угольную пленку (реплику), которую отделяют растворением образца в плавиковой кислоте. [c.135]

    Так как поверхностная работа твердых тел часто значительно превышает поверхностную работу жидкостей, то наблюдаются существенные количественные различия при образовании жидких и твердых трехмерных зародышей. Большое значение имеет также различие в условиях роста жидкой и твердой фаз. При возникновении жидкой фазы присоединение частиц к образовавшемуся зародышу происходит практически беспрепятственно, тогда как, например, при послойном росте кристалла образование каждого нового слоя требует возникновения двумерного зародыша. [c.315]

    Совсем по-иному влияют на процесс кристаллизации растворимые примеси. Дело в том, что зародыш кристалла при своем образовании стремится оттеснить инородные примесные молекулы, что ведет к обогащению этими молекулами слоя расплава, окружающего границы зародыша. По этой причине участие молекул основного вещества в росте зародыша становится затруднительным и для достижения зародышем критического размера уже требуется большее переохлаждение. В присутствии примеси может изменяться (как правило, уменьшается) и скорость роста кристалла. Это, по-видимому, обусловлено адсорбцией примесных молекул на поверхности кристалла. Если адсорбция происходит на активных местах роста, то такое локальное отравление поверхности кристалла тормозит образование кристаллического слоя и рост кристалла замедляется по сравнению с его ростом из чистого расплава. Но, с другой стороны, адсорбция примесных молекул может приводить к уменьшению поверхностной энергии кристалла. Это, в свою очередь, связано с повышением шероховатости поверхности, [c.109]


    При фазовой поляризации, обычно сопровождающей процесс выделения металлов, наиболее медленной стадией, лимитирующей скорость процесса, является процесс образования зародышей кристаллов. При фазовой поляризации (см. рис. 192) зависимость логарифма плотности тока от обратной температуры выражается кривой, проходящей через максимум. Этот максимум соответствует наибольшей вероятности образования зародышей новой фазы. [c.460]

    Переохлаждение жидкой воды. При охлаждении жидкой воды до О" С и более низких температур вода не всегда замерзает. При отсутствии в ней частиц, которые могли бы играть роль зародышей кристаллов (центров кристаллизации), вода, как и многие другие жидкости, способна переохлаждаться, т. е. может сохраняться в жидком состоянии при температурах ниже температуры замерзания. Переохлажденная вода находится в неустойчивом состоянии. Достаточно внести в нее небольшой кристаллик льда (в качестве затравки), чтобы она закристаллизовалась. Это напоминает явление образования пересыщенных растворов и объясняется тем, что для образования первых зародышей новой фазы (в данном случае — кристалликов льда) всегда требуется некоторое пересыщение. [c.13]

    Зародыши кристаллов и отдельные более крупные кристаллы, появившиеся в цементном камне на ранней или поздней стадии его формирования, могут образовывать лишь случайные незакономерные сростки. Для закономерного же срастания двух и более кристаллов даже одного структурного типа необходима их правильная ориентация и выжимание водного (маточного) раствора, находящегося между ними. Имеется и ряд других ограничительных условий для образования таких сростков. [c.342]

    Образование зародышей кристаллов [c.239]

    В разд. 4.5 на основе термодинамических представлений рассмотрены свойства пересыщенных растворов в связи с возможностью возникновения в них структурных образований, ведущих к появлению зародышей кристаллов. Здесь мы коснемся некоторых взглядов на механизм этого явления. [c.239]

    Процесс образования осадка распадается в основном на две стадии а) образование зародышей кристаллизации, которые вследствие своих малых размеров находятся в броуновском движении б) рост зародышей кристаллов. Поверхность зародышей заряжена адсорбированными на ней ионами. Заряд способствует гидратации. В дальнейшем увеличиваются зародыши вплоть до размеров, видимых невооруженным глазом. Это сопровождается образованием больших агрегатов кристаллов. [c.309]

    Процесс образования осадка начинается с возникновения зародышей кристаллов (центров кристаллизации). В результате столкновения ионов при хаотичном их движении в отдельных местах раствора возникают и распадаются агрегаты ионов. Чтобы стать зародышами кристаллов, они должны достичь определенных размеров, которые зависят от индивидуальных свойств ве-щ.еств. Установлено, например, что зародыш хромата серебра состоит пз 6, сульфата бария — из 8, фторида кальция — из 9 ионов. [c.123]

    Концентрация малорастворимого электролита, необходимая для образования зародышей, всегда выше той концентрации, которая достаточна для дальнейшего роста кристаллов. Это объясняется тем, что растворимость мелких кристаллов значительно больше растворимости крупных кристаллов (см. раздел 8.1). Наглядно это показано на рис. 24. Кривая / изображает зависимость растворимости крупных кристаллов от температуры раствора. Область I, находящаяся нил<е этой кривой, соответствует ненасыщенному раствору. Кривая 2 показывает наименьшую концентрацию, при которой начинается образование зародышей кристаллов. В области П, находящейся между обеими кривыми, имеет место рост уже возникших кристалликов. В области 1П происходит как возникновение новых зародышей кристаллов, так и рост уже возникших кристаллов. [c.123]

    Важную роль в процессе образования осадка играет соотношение скорости возникновения центров кристаллизации и скорости роста кристалликов. Если скорость образования центров кристаллизации большая, а рост кристаллов идет медленно, получают мелкодисперсный осадок. Если, наоборот, скорость возникновения зародышей кристаллов низка, а кристаллы растут быстро, получают крупнокристаллический осадок. [c.124]

    Образо11ание тонких слоев этих соединений на поверхности металла вызывает яоявленне цветов побежалости, увеличение толщины слоя продуктов реакции лриводит к окалине. Стадии этого довольно сложного процесса включают адсорбцию газа на поверхности, реакции на поверхности раздела, фаз, образование зародышей кристаллов, образование поверхностного слоя и про-дессы диффузии подвижных частиц сквозь этот слой в обоих направлениях. Это движение обусловлено уменьшением концентрации реагирующих частиц на поверхности и возникшим вследствие этого градиентом концентрации диффундирующих по ионным вакансиям катионов металла (например, Си+) и одновременным движением дефектов электронов (дырок) (например, Си +) к поверхности раздела твердых фаз. На поверхности протекает окислительно-восстановительная реакция с образованием нового твердого вещества. Для системы Си/Оа происходит, например, образование оксида меди(1)  [c.436]

    Одним из основных факторов, определяющих степень выделения и скорость отделения твердых углеводородов от жидкой фазы в процессах депарафинизации и обезмасливаиия, является качество депарафинируемого сырья. Как указывалось выше, большая часть твердых углеводородов относится к изоморфным веществам, способным к совместной кристаллизации с образованием смешанных кристаллов, причем в зависимости от условий выделения из растворов эти кристаллы могут быть разных структуры и размеров. При прочих равных условиях форма и размер этих кристаллов определяются фракционным составом сырья. С повышением пределов выкипания фракции уменьшается полнота отделения кристаллов твердых углеводородов от растворов масляной части, что связано с повышением концентрации твердых углеводородов и изменением их химического состава. При охлаждении раствора сырья с большим содержанием твердых углеводородов в соответствующем растворителе в начальный момент кристаллизации образуется слишком много зародышей кристаллов, на которых при дальнейшем охлаждении кристаллизуются выделяющиеся из раствора твердые углеводороды. В этом случае конечные кристаллы имеют малые размеры, что приводит к уменьшению скорости фильтрования и выхода депарафииированного масла при увеличении содержания масла в твердой фазе. Рост кристаллов определяется типом углеводородов, выделяющихся из растворов в виде зародышей, на которых затем кристаллизуются остальные компоненты твердой фазы [6]. [c.136]

    Кристаллизация твердых углеводородов при депарафинизации зависит от глубины очистки рафинатов, которая характеризуется степенью извлечения смол и полициклических ароматических углеводородов. Смолы остаточного происхождения в большей степени влияют на кристаллообразование твердых углеводородов, чем дистиллятные, содержащиеся в той же концентрации, причем не наблюдается отличия в воздействии аналогичных по происхождению гр)рп смол, содержащихся в рафинатах из серщ1стых и мало-сернисхых нефтей. Смолы при малой концентрации в растворе тормозят, образование зародышей кристаллов, твердых углеводородов и практически не влияют на рост уже образовавшихся кристаллов правильной орторомбической структуры. В. результате из-за снижения чиела зародышей кристаллов в конейрм итоге получаются более крупные кристаллы, чем в отсутствие емол. [c.138]

    Большой практический интерес представляет выбор в качестве модификаторов структуры твердых углеводородов веществ, не ухудшающих эксплуатационные свойства церезинов. Из теории кристаллизации расплавов известно, что при наличии в них примесей или специально введенного компонента, обладающих кристаллографическим сродством к кристаллизующейся фазе, эти вещества могут являться зародышами кристаллизации твердой фазы. В производственной практике подобные вещества имеют большое значение, так как с их помощью можно управлять процессами кристаллизации. Для интенсификации обезмасливаиия в качестве таких веществ [109] исследованы индивидуальные н-алка-ны с числом атомов углерода 20—24. При выборе условий введения этих углеводородов в суспензию петролатума, полученного при переработке западно-сибирских нефтей, показано, что в отличие от депрессорных присадок более эффективно вводить их сразу после термообработки раствора петролатума. Следовательно, н-алканы принимают участие в образовании зародышей кристаллов. Эффективность н-алканов как модификаторов структуры твердых углеводородов оценивают по тем же показателям, что и в случае применения депрессорных присадок при обезмасливании петролатума. [c.182]

    Известно, что твердые углеводороды, кристаллизующиеся из масла, представляют собой смесь углеводородов парафинового, нафтенового и ароматического рядов. Большинство твердых углеводородов относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одна из возможностей образования смешанных кристаллов обусловлена наличием у компонентов длинных углеводородных цепей (в основном нормального строения). Исследования микроструктуры смешанных кристаллов при помощи электронного микроскопа показали, что форма кристаллов и в особенности их размеры в оптимальных условиях охлаждения зависят от концентрации твердых углеводородов, зфтя и относящихся к разным классам, но близких по температуре плавления, и от того, какой тип углеводородов составляет зародыш будущего кристалла. Существенное влияние на формирование кристаллов оказывает вязкость дисперсионной среды (масла) чем выше вязкость среды, тем меньше радиус сферы, из которой выделяющиеся молекулы дисперсной фазы (твердых углеводородов) могут достичь зародыша кристалла, т. е. тем вероятнее возникновение новых центров кри- [c.150]

    Скорость образования кристаллических зародышей из жидкости нри данном переохлаждении (а также скорость образования капель жидкости из пара и т.д.) зависит от присутствия посторонних твердых или растворенных примесей. Эти примеси (пылинки, ионы) служат центрами кристаллизации поэтому в присутствии примесей для появления кристаллических зародышей из жидкости (или из. пара) требуется меньшее переохлаждение. Растворенные поверхностно-активные вещества даже в небольшой концентрации также способствуют появлению кристаллических зародышей при меньшем переохлаждении жидкости. Поверхностно-активные вещества, адсорбируясь на вновь образованной поверхности зародышей кристаллов, уменьшают поверхностное натяжение на межфазной границе кристалл-жидкость. Согласно уравнению (VIII, 253) снижение поверх- [c.379]

    При температурах, ниже температуры насыщения нефти парафинами, образуется новая твердая микрофаза, состоящая из кристаллов избыточных твердых углеводородов и приводящая к образованию нового типа дисперсных частиц. Процесс формирования новой твердой фазы начинается с появления в метастабильной перенасыщенной из-за снижения температуры нефти зародышей кристаллов - мельчайших частиц наиболее высо-когшавких парафинов. Число образующихся зародышей будет определяться концентрацией кристаллизующегося вещества и степенью перенасыщенности нефти при данной температуре. Из-за многокомпонентности кристаллизующейся части углеводородов в нефтях при этом образуются, как правило, твердые растворы. Компоненты образуют смешанные кристаллы, соотношение компонентов в которых определяется составом нефти. При этом характер кристаллизации и температура плавления выделяющейся твердой фазы зависят не только от молекулярной массы и строения углеводородов, но также от соотношения этих углеводородов в нефти. [c.26]

    При реакциях между твердыми веществами наряду с процессами, протекающими на поверхности раздела фаз, и процессами образования зародышей кристаллов при образовании новой фазы большое значение имеют также процессы переноса в кристаллах. Для ускорения относительно медленной объемной диффузии необходим подвод тепловой энергии. Поэтому все реакции между твердыми веществами, как правило, проводятся при повышенных температурах. П(зскольку химическая активность твердых веществ в значительной мере определяется их структурой и величиной поверхности, исходные вещества перед проведением реакции размалывают в тонкий порошок или измельчают каким-либо иным способом, т. е. переводят вещества в состояние с сильно развитой поверхностью. Тем самым осуществляется активация за счет механической энергии (разд. 33.9.2.6). Для проведения реакций между твердыми соединениями чаще всего используют смеси порошков или прессованные таблетки. Для установления равновесия обычно требуется постепенное нагревание до довольна высокой температуры. Для исследования конечных продуктов и кинетических измерений особенно удобны структурно-аналитические и физические методы анализа. При определении механизмов реакции было установлено, что в некоторых твердофазных реакциях перенос компонентов реакции происходит через газовую фазу. [c.437]

    Скорость зародышеобразо-вания. Образование больших кристаллов в процессе осаждения происходит следующим образом (рис. Д.67) при образовании первых зародышей кристаллов с радиусом г первоначальная концентрация раствора уменьшается. При этом увеличивается радиус частиц, находящихся с этим раствором в состоянии равновесия. Для образования больших частиц в принципе возможны два пути а) крупные частицы образуются спонтанно из большого числа частиц с докритическими радиусами или [c.199]

    Пересыщение наблюдается также при осаждении сульфида цинка. Это особенно заметно при осаждении сульфида ртути в присутствии ионов цинка, которые не образуют осадка ZnS в отсутствие сульфида ртути. На поверхности осадка HgS адсорбируются сульфид-ионы и ионы цинка, так что в адсорбированном слое произведение концентраций z-a s - значительнобольше, чем в растворе, и в соответствии с этим зародыши-кристаллов легче образуются на поверхности осадка. В конечном итоге на поверхности сульфида ртути выделяется сульфид, цинка. Его нельзя затем полностью вымыть соляной кислотой что может привести к образованию твердого раствора сульфидов цинка и ртути. Последующее осаждение можно уменьшить увеличением концентрации соляной кислоты при осаждении, так как при этом ионы гидроксония вытесняют ионы цинка из [c.206]

    Рассмотрим процесс кристаллизации расплава индивидуального вещества, пренебрегая содержащимися в нем примесями. При охлаждении расплава до температуры плавления соответствующего ему твердого вещества в нем возникают флуктуации плотности, которые представляют собой относительно большие скопления частиц (молекул, атомои или ионов) вещества с ориентированным расположением, приближенно подобно тому, как это имеет место в кристаллической решетке. Такие скопления можно рассматривать как некие комплексы, агрегаты или ассоциаты их иногда называют дозародышевыми образованиями. Но они еще не являются стабильными образованиями число частиц в них вследствие теплового движения в расплаве различно и не постоянно. Сталкиваясь друг с другом, такие конфигурации групп частиц могут укрупняться или распадаться в зависимости от соотношения действующих в них межмолекуляр-ных сил и воздействия на эти частицы молекул расплава. При дальнейшем понижении температуры расплава, т. е. при его переохлаждении, преобладающее влияние будет проявлять первый из указанных эффектов. Размеры образований при этом в целом будут увеличиваться до некоторой критической величины. В результате в расплаве начинается образование зародышей кристаллов ( критических кластеров ), которые и становятся центрами кристаллизации. Скорость их образования определяется заданным переохлаждением расплава. По достижении определенного переохлаждения расплава после образования в нем зародышей кристаллов на последних начинается выделение твердой фазы, характеризующееся той или иной скоростью роста образующихся кристаллов. Одновременно может [c.106]

    Другое возражение связано с вопросом гомогенного возникновения зародышей кристаллов алмаза из раствора-расплава. Ввиду того, что алмаз обладает огромной поверхностной энергией (большей, чем у всех других веществ), работа образования зародыша кристалла для него будет аномально велика. Строгие расчеты показывают, что вероятность флуктуативного возникновения алмазного зародыша ничтожно мала. Еще один экспериментальный факт показывает, что предложенный механизм кристаллизации не может быть общим. В подавляющем большинстве случаев синтез алмазов происходит при такой температуре, когда активирующее вещество (металл или его эвтектическая смесь с углеродом или соответствующим карбидом металла) начинает плавиться. Однако имеются четко поставленные опыты, в которых кристаллизация алмаза происходила, а активирующее вещество (например, тантал) было в твердом состоянии. [c.136]

    Морфология, состав и дисперсность кристаллов гидросиликатов кальция изменяются в присутствии посторонних ионов в водном растворе и в кристаллах алита. Так, гидратация aS замедляется в присутствии Са(ОН)г, СзА и значительно ускоряется в присутствии a lj и других хлоридов, бромидов, нитритов, сульфатов, карбонатов, щелочных металлов и гипса. Ускорение реакции обусловливается уменьшением длительности индукционного периода гидратации за счет интенсификации процесса образования зародышей кристаллов новых гидратных фаз. [c.318]

    Влияние электролита. С уменьшением концентрации ионов выделяемого металла увеличивается поляризация, скорость образования новых зародышей кристаллов возрастает, и осадок становится более мелкозернистым. А. Т. Баграмяном на примере электролиза нитрата серебра показано, что по мере разбавления раствора число образующихся кристаллов возрастает. Автор делает вывод, что причиной этого является увеличение активности поверхности электрода в связи с уменьшением в электролите пассивато-ров (примесей посторонних веществ). [c.131]


Смотреть страницы где упоминается термин Зародыши кристаллов образование: [c.43]    [c.133]    [c.97]    [c.337]    [c.330]    [c.141]    [c.180]    [c.331]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.47 , c.243 , c.245 , c.376 , c.381 , c.410 ]

Физико-химическая кристаллография (1972) -- [ c.285 , c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Зародыш

Зародыш кристаллов

Образование зародышей



© 2024 chem21.info Реклама на сайте