Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие атом-атомное

    Выбор атомов в качестве силовых центров молекулы при рассмотрении межмолекулярного взаимодействия (атом-атомное приближение) имеет ряд преимуществ перед выбором в качестве силовых центров валентных связей и атомных групп. Входящие в молекулу атомы в гораздо большей степени, чем валентные связи или атомные группы, можно рассматривать изотропными. Это позволяет принять, что атом-атомные потенциалы межмолекулярных взаимодействий зависят только от расстояний между центрами атомов [27, 204, 252, 253]. Чтобы силовые центры можно было рассматривать точечными, их [c.254]


    Развитие модели кристаллического вещества, о котором мы говорили, в значительной своей части происходило в 20-е и 30-е годы на базе ионных, металлических и ковалентных кристаллов. Лишь в 50-е годы совершенствование аппаратуры и методики рентгеноструктурного анализа открыло путь к систематической расшифровке достаточно сложных органических структур. Создание соответствующего варианта модели стало актуальным и доступным. Именно тогда сформировалось представление о молекулярных упаковках, и весьма несовершенная на первый взгляд модель, в которой каждый атом представляется шариком, а молекула — совокупностью перекрывающихся сфер, оказалась довольно тонким и надежным инструментом. Вскоре на базе этих идей был разработан универсальный метод расчета энергии межмолекулярных взаимодействий — атом-атомное приближение. [c.135]

    Потенциалы (2)-—чисто атом-атомные. Точечные заряды расположены на атомах кислорода и водорода ( н = 0,34е, до = = 0,68е), невалентные взаимодействия между всеми ато.ма.ми описываются формулой [c.138]

    Конечно, тут открывается большой простор для фантазии теоретика (деформируй отдельные электронные облака атомов молекулы так, или почти так, как хочешь, благо математика это позволяет ). Можно сосредоточить (локализовать) электронную плотность частично на атомах (в виде электронных пар внутренних оболочек атомов или неподеленных электронных пар валентной оболочки), а частично на химических связях (локализация электронов в поле двух ядер отвечает двухцентровому взаимодействию атом — атом, которое описывается классической символикой валентного штриха), а можно пользоваться и делокализованными орбиталями, охватывающими в принципе все атомные ядра молекулы. Разумный теоретик стремится воспользоваться этой свободой для того, чтобы построить модель, приемлемую для химика и пригодную для описания данного класса свойств. [c.210]

    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]


    Во второй части курса после краткого изложения термодинамики адсорбции и способов получения термодинамических характеристик адсорбции из хроматографических измерений излагается молекулярно-статистическая теория адсорбции, теория межмолекулярных взаимодействий в атом-атомном приближении и количественные расчеты термодинамических характеристик адсорбции, исходя из [c.3]

    Молекулярно-статистические выражения константы Генри для адсорбции на инертном адсорбенте с однородной поверхностью и потенциальная энергия межмолекулярного взаимодействия адсорбат — адсорбент. Нахождение атом-атомных потенциалов, удовлетворяющих экспериментальным значениям констант Генри для адсорбции на графитированной саже опорных молекул алканов, алкенов, алки-нов и ароматических углеводородов, и проверка возможности переноса найденных потенциалов на другие углеводороды. Адсорбция дейтерированных углеводородов. Нахождение атом-атомных потен-ци-алов для кислородсодержащих соединений, в частности гетероциклических. Зависимость атом-атомных потенциалов межмолекулярного взаимодействия от электронной конфигурации атомов в молекуле. [c.160]

Рис. 9.3. Атом-атомный потенциал межмолекулярного взаимодействия атома углерода молекулы н-алкана с атомом углерода графитированной термической сажи Фс( рЗ).,, С(ГТС) Рис. 9.3. <a href="/info/300940">Атом-атомный потенциал межмолекулярного взаимодействия</a> атома <a href="/info/261102">углерода молекулы</a> н-алкана с атомом углерода графитированной термической сажи Фс( рЗ).,, С(ГТС)
    Дальнейшие молекулярно-статистические расчеты константы Генри по уравнениям (9.25) — (9.27) или по уравнениям (9.29) — (9.31) требуют знания формы и параметров атом-атомных потенциалов межмолекулярного взаимодействия. Эти расчеты для адсорбции на ГТС показали, что различие в форме потенциалов мало влияет на результаты. Часто используют следующие три потенциала Бакингема — Корнера (6, 8, ехр) [c.168]

    Таким образом, эти потенциалы можно рассматривать как подходящий инструмент для расчетов Ф и К, требующий, однако, дальнейшего уточнения параметров. При расчетах К на ГТС была выбрана более обоснованная форма атом-атомного потенциала межмолекулярного взаимодействия (6, 8, ехр), а именно уравнение (9.34). На рис. 9.3 показан атом-атомный потенциал Рс(5рз)...с(гтс) в этой форме. Как уже было отмечено, форма атом-атомного потенциала мало влияет на результаты молекулярно-статистического расчета при соответствующем подборе параметров этого потенциала. Поэтому для упрощения записи воспользуемся потенциалом Леннард-Джонса (6, 12), т. е. уравнением (9.36). В минимуме потенциальной кривой ( Р/ / )г=г =0,, поэтому из уравнения (9.36) следует, что параметр отталкивания В равен [c.169]

    Проверим теперь, можно ли использовать те же атом-атомные потенциалы для расчета /С1 в случае адсорбции на ГТС цикланов. На рис. 9.5 приведены результаты расчета для адсорбции на ГТС циклопропана, циклопентана и циклогексана. При расчетах были использованы те же атом-атомные потенциалы (9.44) и (9.45), что и для алканов. Рассчитанные и опытные значения К1 для слабо напряженных цикланов— циклогексана (в конформации кресла) и циклопентана (в конформации конверта) в пределах их погрешностей совпадают. Однако для сильно напряженной молекулы циклопропана опытные значения К1 лежат заметно выше рассчитанных. Поэтому можно предположить, что атом-атомный потенциал межмолекулярного взаимодействия атомов С циклопропана с атомами С графита отличается от атом-атомного потенциала <рс ( р ) с (гтс>. для алканов и ненапряженных или слабо напряженных цикланов. Это находится в согласии с тем, что электронная конфигурация атомов С в циклопропане близка к конфигурации sp (в молекуле циклопропана существуют псевдо-л-орбитали трехчленного кольца). Позже будет показано, что примерно на столько же отличается атом-атомный потенциал межмолекулярного взаимодействия с атомом С графита атомов С молекул, образующих двойную или ароматическую связь. Особенно сильно это проявляется при адсорбции циклопропана на ионных адсорбентах (см. лекцию М). [c.173]

    В ароматических углеводородах атомы углерода находятся в особом сопряженном состоянии. Для уточнения параметров атом-атомного потенциала фс(ар)... с(гтс) были использованы экспериментальные значения К для адсорбции бензола на ГТС. На рис. 9.10 пунктирной линией представлены результаты расчета Кг для адсорбции на ГТС бензола на основе атом-атомных потенциалов <Рс с (ГТС) (9.45) и фн...с(гтс) (9.44). Из рисунка видно, что экспериментальные значения К лежат выше вычисленных таким путем. Наилучшее согласие с экспериментальными данными получилось при использовании того же выражения (9.47) для потенциальной ( )ункции межмолекулярного взаимодействия атома С молекулы ароматического углеводорода с атомом С ГТС, что и для потенциала <рс( р )... с(гтс), полученного для адсорбции на ГТС этилена. Как уже отмечалось, сопряжение я-связей мало сказывается на межмолекулярном взаимодействии с ГТС (см. рис. 9.8). [c.178]


    На рис. 9.12 представлено сопоставление расчета с экспериментом для флуорена. Молекула флуорена была принята плоской, как это следует из рентгеноструктурных данных для кристаллического состояния. В расчете Ki использовались атом-атомные потенциальные функции (9.44), (9.45) для атома g и (9.47) для остальных атомов С. Совпадение рассчитанных величин Ki с измеренными показывает возможность переноса этих трех атом-атомных потенциалов для описания межмолекулярного взаимодействия сложной молекулы флуорена с ГТС, несмотря на то, что в молекуле флуорена пятичленный цикл несколько напряжен ввиду его плоской конформации. [c.180]

    Рассмотрим определение атом-атомных потенциалов ф)О(эфир)... с(гтс) и фО(кетон)... с(гтс). В качестве опорной молекулы в первом случае была взята молекула диоксана. Для межмолекулярного взаимодействия атома кислорода этой молекулы с атомом [c.181]

    Атом-атомный потенциал межмолекулярного взаимодействия с ГТС кислорода органических молекул зависит от электронной конфигурации атома кислорода в молекуле. Из рис. 9.16 видно, что потенциал (9.51) дает заниженные значения К для адсорбции на ГТС кетона — циклогексанона. Согласие с экспериментом дает следующий атом-атомный потенциал (ф, кДж/моль г, нм)  [c.183]

    Для полярных молекул вычисление дополнительного вклада электрической энергии в виде суммы парных взаимодействий зарядов на атомных ионах является наиболее простым и естественным приближением в рамках метода атом-атомных потенциалов. Однако заряды на атомах молекулы зависят от атомного окружения и типа связей в молекуле, в состав которой входит данный атом. Поэтому выбрать значения зарядов для каждого атома данной молекулы затруднительно. Здесь необходимо привлечение квантово-химических расчетов. Эти расчеты должны дать такие значения зарядов на атомах, которые бы воспроизводили определенные экспериментально электрические дипольные и квадрупольные моменты молекул. [c.217]

    Потенциал атом-атомного взаимодействия [c.237]

Рис. II. 14. Учет взаимодействия между двумя двух-атомными молекулами в атом-атомном приближении. Рис. II. 14. <a href="/info/308180">Учет взаимодействия</a> между двумя <a href="/info/1696521">двух</a>-<a href="/info/373392">атомными молекулами</a> в <a href="/info/68122">атом-атомном</a> приближении.
    Современная теория теплоемкости кристаллов выводит колебательный спектр, исходя из их структуры и конкретных характеристик межатомных взаимодействий. Объектом рассмотрения являются не только одноатомные, но и молекулярные многоатомные кристаллы (для описания межмолекулярных взаимодействий при этом обычно используются атом-атомные потенциалы). Учитывается ангармоничность колебаний, что особенно важно для описания теплоемкости в области высоких температур. [c.189]

    В последние годы получили распространение потенциалы, называемые атом-атомными. Основная идея подхода состоит в представлении потенциальной энергии взаимодействия молекул в виде суммы парных взаимодействий образующих молекулы атомов (учитываются взаимодействия данного атома со всеми атомами другой молекулы). Атом-атом-ные взаимодействия описываются парными потенциалами, зависящими лишь от расстояния между атомами (потенциалы Леннард-Джонса, ехр — 6 и др.). Параметры атом-атом-потенциалов определены для ряда систем с помощью экспериментальных данных о структуре и энергии кристаллов и др. Очевидно, суммарная энергия взаимодействия всех пар атомов, образующих молекулы, в общем случае оказывается зависящей от ориентации молекул. [c.283]

    Подгруппа меди (Си, Ад, Аи). В кристаллах и расплаве меди, серебра п золота концентрация свободных электронов приблизительно одинакова и составляет около одного электрона на атом. Обобществлены электроны 5-состояний. Предполагается, что -электронные оболочки атомных остовов перекрываются слабо, поэтому взаимодействия между атомными остовами в кристаллах и жидкой фазе не характеризуются [c.194]

    Полная потенциальная энергия молекулярного кристалла в атом-атомном приближении получается суммированием энергий взаимодействия по парам молекул. Ожидается, что результат будет приблизительно тем же, что и теплота сублимации, экстраполированная к О К при условии, что при возгонке не происходит изменений в конформации молекул и колебательных взаимодействиях. [c.465]

    Предположим, что два кристалла приведены в соприкосновение таким образом, что атомы могут диффундировать из одного кристалла в другой. Кристаллы должны быть похожими настолько, чтобы этот процесс происходил без изменения энергии системы другими словами, мы считаем, что кристаллы имеют одинаковую структуру решеток и что различные атом-атомные взаимодействия идентичны, поэтому образующиеся смешанные кристаллы представляют идеальные твердые растворы (разд. 4.17). Как показано на рис. 2.1, первоначально имеются четыре атома А в кристалле А и четыре атома В в кристалле В. Это распределение атомов является единственно возможным для системы в начальный момент  [c.56]

    В программе оперируют числовые элементы 12 массивов (М1-М12). Mi и М2 - массивы значений валентных углов и длин связей, М3 - массивов углов вращения, М4 - массив, включающий требуемые математические и физические константы, эмпирические параметры потенциалов атом-атомных взаимодействий, заряды на атомах и соответствующие признаки в случае циклической молекулы. Массивы М1-М4 сохраняются без изменений при исследовании соединений одного класса. М5 - массив нулевых приближений, задающий значения варьируемым параметрам массивов М1-МЗ. Мб - массив фазовых углов, заполняется автоматически и состоит из величин, отвечающих качественно отличным частям молекулы Можно отметить два основных типа фазовых углов, связывающих векторы при двух парах атомов - sp -sp и sp -sp гибридизациях. Массивы М7-М12 -основные для цифровой шифровки молекулы. М7 - двумерный массив номеров, предшествующих троек векторов, посредством которых вычисляются последующие векторы молекулярной системы. М8 - основной массив для вычисления направляющих косинусов векторов рассматриваемой системы. М9 - двумерный массив пар чисел для каждого вектора. Он используется при вычислении координат атомов и автоматической отсортировки фиктивных векторов, вводимых для удобства вычисления фазовых углов. Первое число каждой пары соответствует номеру атома, от которого берет начало вычисляемый вектор, второе - номер валентной связи в массиве М2, вдоль которой направлен искомый вектор (для фиктивных векторов это число равно 0). М10 - массив пар номеров атомов, взаимодействие между которыми не учитывается. К таким парам, например, относятся атомы, расстояния между которыми в любых конформациях остаются неизменными, что позволяет существенно ускорить процесс поиска локальных минимумов. При замене одного из логических условий в блоке VI массив М10 принимает участие уже в противоположном процессе. В этом случае каждая пара чисел представляет собой номера атомов, взаимодействие между которыми, и только между ними, дает вклад в общую энергию. Такой прием иногда бывает полезен при вычислении энергии взаимодействия между отдельными небольшими частями большой молекулы. МП - массив пар номеров атомов, участвующих в водородном связывании, а М12 - массив признаков атомов по их принадлежности к тому или иному химическому элементу. Необходимость массива М12 связана с выбором соответствующей потенциальной функции для учета энергии взаимодействия между конкретной парой атомов. [c.238]

    Для определения числа и природы вращательных изомеров, а также заселенностей конформаций дивинилсульфида и его ana-, логов использованы методы атом-атомных потенциалов и карт потенциальной энергии [499]. Как уже отмечалось выше, положение минимумов на потенциальной поверхности внутреннего вращения определяется соотношением. двух конкурирующих факторов пространственного затруднения и р—я-взаимодействия. Первый фактор характеризует взаимодействие несвязанных между собой атомов, которое препятствует реализации плоских конформаций рассматриваемых молекул. Наибольшую роль пространственное затруднение должно играть в г мс-г ис-форме за счет сильного отталкивания. -водородных атомов винильных групп. Для расчета энергии пространственного затруднения избран метод атом-атомных потенциалов, количественно учитывающий способность молекулы к деформации валентных углов по сравнению с их значениями в ненапряженных молекулах. Второй фактор (р-я-взаимодействие) для каждого из двух внутренних вращений может быть представлен первыми двумя членами разложения в ряд Фурье — [c.174]

    На это указывает молекулярно-статистическая обработка адсорбционных данных и получение соответствующих атом-атомных потенциальных функций межмолекулярного взаимодействия атомов углерода углеводородов с атомами углерода графита. Однако для линейных и плоских молекул этот эффект меньше влияния соответствующего уменьш1ения числа атомов водорода в молекуле. Ниже приведены константы Генри К (при =—86,2°С) и начальные (при адсорбции Г- 0) дифференциальные теплоты адсорбции 1 на ГТС этана, этилена и ацетилена  [c.17]

    НИЯ значений Л", для адсорбции на ГТС опорной молекулы данного класса соединений, рассчитанных из свойств адсорбата и адсорбента, взятых в отдельности [т. е. из соответствующих величин а и X, введенных в приближенную квантово-механическую формулу (9.39), и величин г о, введенных в сумму (9.40)], с экспериментальными значениями К. Это делает расчеты значений К для адсорбции на ГТС других молекул данного класса иолуэмпирическими, но зато позволяет подойти количественно к выяснению вопроса о возможности переноса исправленных так атом-атомных потенциалов ср на другие соединения того же класса, а также к установке влияния на межмолекулярное взаимодействие изменения электронной конфигурации атомов молекулы адсорбата при переходе от одного класса адсорбатов к другому. Исправленные так полуэмпирические атом-атомные потенциалы межмолекулярного взаимодействия ф уже можно рассматривать как удобный инструмент для количественного изучения влияния структуры молекул адсорбата на их адсорбционные (хроматографические) свойства. [c.171]

    Прежде всего было установлено, что полученный атом-атомный потенциал <рс (лрз)... с(гтс) дает при адсорбции этилена на ГТС заниженные значения 1п [если принять, что фн... с(гтс) (9.44) остается неизменным]. Таким образом, межмолекулярное взаимодей- ствие с ГТС атомов углерода молекул, находящихся в конфигурации 5р2, сильнее, чем в рассмотренном выше случае адсорбции молекул с атомами углерода в конфигурации хр . Уменьшение Кг и 1 при адсорбции на ГТС этилена по сравнению с этаном (см. табл. 1.2) происходит за счет уменьшения числа атомов водорода в мо- лекуле этилена по сравнению с молекулой этана. Этот пример показывает, что адсорбция на ГТС позволяет выявить влияние на межмолекулярное взаимодействие электронной конфигурации атомов углерода в молекулах углеводородов. [c.175]

    Следует отметить, что влияние электронной конфигурации атомов в молекуле на межмолекулярное взаимодействие не было выявлено при исследовании методом атом-атомных потенциалов межмолекулярных взаимодействий в молекулярных кристаллах углеводородов или в реальных газах, В этих случаях большое значение лмеет потенциал фн... н, поскольку на периферии молекул углеводородов расположены атомы водорода. При адсорбции же малых доз углеводородов на ГТС взаимодействием адсорбат — адсорбат можно пренебречь, так что потенциал фн...н в расчет К не входит. [c.175]

    При адсорбции на обработанной водородом при 1000—1400 С ГТС (см. лекцию 1) замещенных н-алканов, содержащих полярные группы — эфирную, карбонильную, гидроксильную, амннную, нит-рильную или нитрогруппу, из хроматографических измерений получаются линейные зависимости п К и дх от числа атомов углерода в молекуле. Эти зависимости указывают на аддитивность энергии межмолекулярного взаимодействия с ГТС и на возможность определения вкладов, вносимых в эту энергию соответствующими полярными группами. Однако для нахождения соответствующих атом-атомных потенциалов удобнее воспользоваться адсорбцией квазижестких молекул, не способных к внутреннему вращению. [c.181]

    Жесткие остовы молекул афлатоксинов, зеараленонов и трихотеценов являются неплоскими, что. уменьшает их удерживание. Поэтому они представляют собой удобные объекты для применения хроматоструктурного метода. Для этого надо экспериментально определить К1 для адсорбции таких веществ на ГТС и сопоставить их с результатами молекулярно-статистического расчета К для предполагаемых конфигураций и квнформаций молекул этих веществ. В расчете надо использовать полученные в лекции 9 атом-атомные потенциалы для межмолекулярного взаимодействия с атомами углерода ГТС атомов водорода, углерода и кислорода молекул. [c.202]

    Атом-атомные потенциалы Рс1...с(гтс) и срм...с(гтс) для межмолекулярного взаимодействия с ГТС атомов хлора и, соответственно, азота, входящих в различные молекулы в разном окружении, еще не определены. Поэтому нельзя сделать количественных выводов о структуре этих молекул. Однако, применяя качественный хроматоскопический метод, т. е. основываясь лишь на эксперименталь- [c.203]

    При уточнении экспериментальных значений констант Генри и атом-атомных потенциалов межмолекулярного взаимодействия при адсорбции хроматоскопический метод из-за его высокой чувствительности к некоторым структурным параметрам молекул сможет стать важным дополнением к ряду других методов изучения структуры молекул, в частности молекул множества биологически активных веществ и их метаболитов, достаточно сильно различающихся по геометрии. [c.204]

    MINDO Потенциал атом-атомного взаимодействия Теплоты образования, потенциалы ионизации. Длины связей Спектр [c.358]

    Энергию вандерваальсовых кристаллов, образованных многоатомными молекулами, оценивают часто, суммируя парные атом-атомные взаимодействия (об атом-атомных потенциалах см. разд. П.6). [c.182]

    Поскольку парциальные заряды на полярных атомах боковых групп (лизина, аргинина, глутаминовой и аспарагиновой кислот)обычно в несколоко раз выше, чем для атомов основной цепи [101, то электростатические контакты между ними должны давать значительный вклад в стабилизацию белковой конформации. Исследование атом-атомных взаимодействий в -спиральных белках с известной пространственноЛ структурой позволяет сделать вывод о значительном количестве (9 ) электростатических контактов внутри структуры белка. Вклад одного гидрофобного контакта дает выигрыш энергии л/ o.s ккал/моль, а одного электростатического до 4 ккал/моль. В связи с этим проведенный адализ подтверждает необходимость учета этого типа взаимодействий при расчете энергии определенных конформаций белка. [c.141]

    Рассмотрение межмолекулярных взаимодействий удобно свести к учету атом-атомных невалентных взаимодействий. Хотя для подобных взаимодействий существует квантовомеханическая теория, вполне успещ-ными оказались эмпирическая и нолуэмпирическая трактовки. При описании атом-атомных невалентных взаимодействий полагают, что происхождение вандерваальсовых сил обусловлено разными причинами. [c.465]

    Понятие Н. в. используют прн расчетах нотенц. эиергии системы (молекулы, кристалла, жидкости) на основе простых аналит. моделей типа модели атом-атомных потенциалов. Предполагается, что изменение потенц. энергии пры изменении геом. конфигурации молекулы м. б. представляю в виде отдельных вкладов, сопоставляемых изменениям длин связей, валентных и торсионных углов, а также вкладов, соответствующих внутримолекулярным Н.в. атомов, разделенных по меньшей мере тремя (реже-двумя) хим. связями. В широком смысле-термин Н.в. относят и к межмол. взаимодействиям. [c.199]

    Классический подход к исследованию конформаций был предложен в 1946 г. Т. Хиллом [65] и независимо в том же году Ф. Уэстгеймером и Дж. Майером [66]. Существенный вклад в развитие теории метода атом-атомных невалентных взаимодействий, его применение и популяризацию внес А.И. Китайгородский [67-71]. Подход к оценке взаимодействий включает ряд отнюдь неочевидных допущений и с физической точки зрения не выглядит достаточно строгим. Его аппроксимация реальных внутримолекулярных взаимодействий базируется на механической модели, согласно которой молекула представляется системой точечных масс -атомов без учета их электронно-ядерной структуры и квантовой природы. Атомы соединены валентными связями, которые, как правило, предполагаются жесткими. Пространственное строение такой модели молекулы определяется разного рода взаимодействиями между всеми валентно несвязанными атомами в попарно-аддитивном приближении и ограниченной свободой вращения вокруг всех ординарных связей. Следовательно, предполагается, что взаимодействие между любой парой валентно-несвязанных атомов не зависит от внутримолекулярного окружения, т.е. имеет универсальный характер и определяется исключительно природой атомов и расстоянием между ними. [c.112]

    Межатомные невалентные взаимодействия подразделяются на ван-дер-ваальсовы, электростатические, торсионные и водородные связи. Каждый вид атом-атомных взаимодействий описывается полученной на основе полуклассических или классических предположений потенциальной функцией с системой параметров, подобранных эмпирически. Общая энергия невалентных взаимодействий [/общ (конформационная внутренняя энергия молекулы) предполагается в соответствии с принципом Борна-Оппен-геймера (1927 г.) независимой от энергии валентных связей и пред- [c.112]

    В соответствии с термодинамической гипотезой Анфинсена и теорией структурной организации белка (см. гл. 2), будем считать, что механизм свертывания этих сложных олигопептидов является не статистическим, а статистико-детерминистическим, причем стерически возможными или предпочтительными становятся взаимодействия только между определенными парами остатков ys. Расчет всех молекул строился таким образом, что его результаты должны были опровергнуть или доказать справедливость представления о том, что определяет конформацию молекулы не образование дисульфидных мостиков, а, напротив, детерминированные состояния различных участков цепи, взаимодействия между которыми диктуют избирательную сближенность цистеиновых пар. При априорном многостадийном конформационном анализе пептидов из 18, 21, 22 и 36 аминокислотных остатков случайная сближенность цистеинов практически исключена. Поэтому автоматический приход на завершающей стадии расчета каждого пептида к самым низкоэнергетическим конформациям линейной последовательности молекулы с близкими контактами между соответствующими остатками ys будет одновременно свидетельствовать о наличии согласованности всех видов межостаточных взаимодействий в глобальной структуре (одно из основных положений конформационной теории белка), справедливости термодинамической гипотезы образования дисульфидных связей, адекватности использованных в расчете потенциальных функций реальным атом-атомным взаимодействиям и, наконец, [c.292]

    Бифуркационная термодинамическая теория и обобщение известных опытных данных о нативных конформациях белковых молекул послужили основой для разработки физической теории структурной организации белка. Физическая теория позволила представить громоздкую задачу структурной организации белка в виде менее сложных задач, поддающихся последовательному рассмотрению. Поэтапный подход к решению осуществлен путем разбиения всех внутримолекулярных невалентных взаимодействий на ближние, средние и дальние. Количественная оценка энергии всех видов взаимодействий производилась с помощью метода атом-атомных потенциалов ван-дер-ваальсовых, электростатических и торсионных взаимодействий и водородных связей (см разд 2.2). [c.586]

    Уже первые теоретические расчеты взаимодействий между азотистыми основаниями в ДНК показали, что ван-дер-ваальсовы (т. е. диполь-дипольные, индукционные и дисперсионные) взаимодействия в паре ГЦ значительно сильнее, чем в АТ. В дальнейшем электростатические взаимодействия были рассмотрены более строго, а также с полмощью атом-атомных потенциалов учтены силы отталкивания. Разработай метод расчета энергий горизонтальных и вертикальных взаимодействий, вычисляемых как суммы взаимодействий атомов. Определяется сумма энергий электростатических и поляризационных взаимодействий и энергии отталкивания. Заряды на атомах и связях находятся с помощью приближенных методов квантовой химии. Контролем эффективности методов расчета служат расчеты энергий ряда [c.232]


Смотреть страницы где упоминается термин Взаимодействие атом-атомное: [c.689]    [c.64]    [c.181]    [c.204]    [c.418]    [c.65]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.592 , c.593 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие атомов



© 2025 chem21.info Реклама на сайте