Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная перегонка

    Бензольная составляющая может быть удалена очисткой серной кислотой. Парафи- новый углеводород удаляется в виде продуктов крекинга, для чего >фракцию подвергают пиролизу при 550—650° со временем пребывания в реакторе 10—20 сек. После повторной перегонки и очистки серной кислотой для удаления небольших количеств олефинов получают 96%-ный циклогексан. Очистка циклогексана может производиться также методами экстрактивной, вернее азеотронной перегонки. О путях промышленного решения этой задачи надежных данных нет. [c.100]


    После удаления олефинов взбалтыванием с концентрированной серной кислотой, промывки водой и последующей перегонки из этой смеси была получена с 85%-ным выходом смесь изомеров хлористого додецила с содержанием хлора 17,35%. [c.387]

    Во всех нефтях в небольших количествах (менее 1 %) содержится азот в виде соединений, обладающих основными или не — 1гг ральными свойствами. Большая их часть концентрируется в вы — сококипящих фракциях и остатках перегонки нефти. Азотистые основания могут быть выделены из нефти обработкой слабой серной кислотой. Их количество составляет в среднем 30 — 40 % от суммы всех азотистых соединений. [c.72]

    Толуол — продукт гидроформинга обработка 98%-ной серной кислотой в количестве 11,4 г на 1 л толуола, затем промывка едким натром, водой и повторная перегонка. [c.108]

    Светлые нефтепродукты. Как уже говорилось выше, обработка крекинг-дистиллятов серной кислотой связана с потерями нефтепродукта. Эти потери вызываются как реакциями между кислотой и углеводородами, так и полимеризацией, в результате которой получаются продукты тяжелее бензина. Последнее обстоятельство вызывает необходимость во вторичной перегонке очищенного дистиллята. Если при очистке работают с охлаждением [c.227]

    Сернистые соединения, содержащиеся в легких нефтяных дистиллятах, в какой-то степени, но-видимому, являются продуктами разложения более тяжелых и более сложных серусодержащих комплексов, которое произошло нрп перегонке или крекинге. В нефтяных дистиллятах были обнаружены следы элементарной серы, сероводород, меркаптаны, сульфиды, дисульфиды и тиофены, а также продукты, по своей природе относящиеся к сульфатам, сульфокислотам, серной кислоте и сероуглероду [161]. Удаление из нефтепродукта сернистых соединений ст( ь различных классов связано с целым рядом проблем. [c.248]

    Сырые нефти обычно содержат большой процент асфальтенов (нефти асфальтового основания), от которых невозможно избавиться простой перегонкой, и нафтеновых кислот, которые удаляются при перегонке в присутствии каустической соды. Масляные фракции выделяются перегонкой, но зачастую они настолько широки, что возникает потребность во вторичной ректификации. Очистка с применением селективных растворителей заменила очистку с применением серной кислоты и каустической соды. [c.495]


    Эти соединения при. перегонке с паром регенерируют бензол и серную кислоту.  [c.41]

    В качестве сырья для двухступенчатого процесса может применяться смесь газов, содержащая к-бутен, которая образуется при крекинге и используется для получения высокооктанового карбюраторного топлива. Этот крекинг-газ, как указывалось выше при помощи 65—70%-ной серной кислоты может быть освобожден от изобутена, а затем экстрактивной перегонкой с фурфулом из него может быть выделена газовая смесь, примерно на 90% состоящая из бутенов. Первую ступень дегидрирования можно проводить так, как это предусмотрено при получении бутадиена методом Стандард Ойл. [c.85]

    Процесс основан на том, что неароматическая часть образует со смесью метанол — вода илиметил-этилкетон — вода тройную азеотропную смесь, от которой ароматические углеводороды могут быть отделены перегонкой. На рис. 52 дана упрощенная схема выделения чистого толуола из продуктов гидроформинга. Из продуктов гидроформинга выделяется кипящая в узких пределах толуольная фракция, которую подают в колонну вместе с азеотропо-образователем, в данном случае с водным метилэтилкетоном. Азеотропная смесь (метилэтилкетон — вода — неароматическая часть) отгоняется, а получающийся в виде остатка чистый толуол отбирают из низа колонны, и далее очищают серной кислотой и промывают щелочью, водой и повторно перегоняют. [c.108]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]

    Полученную после сульфирования сульфокислоту разла1али по методу Кпжнера [7], усовершенствованному Казанским и Гасан-Заде [8], Смесь сульфокислоты и серной кислоты отделяли от деароматизированного бензина, добавляли на один объем кислоты три объема воды, переносили в колбу Вюрца, температуру кипящей жидкости измеряли опущенным в нее термометром. Перегонку проводили при 155— 160 С, П0 ле чего оставляли на ночь для выкрнсталлизации сульфокислоты. На второй день на воронке Гутча отделяли кристаллическую сульфокислоту от составной части жидкости. Жидкую часть снова помещали в колбу Вюрца, добавляли тройной объем воды и нагревали до 155—160°С, оставляли на почь и, если на второй день не имело место выделение кристаллической сульфокислоты, нагревали до 210°С. Гидролиз кристаллических сульфокислот проводили следующим образо.м к одной весовой части сульфокислоты добавля- [c.20]

    Исследуемая фракция с температурой кипения 200— 250°С выделялась вакуумной перегонкой сацхс1шсской нефти (скважина № 4, глубина 1400 м). Полученная фракция промывалась 75%-ным раствором серной кислоты, 10%-ным раствором соды и дистиллированной водой до нейтральной реакции. После высушивания над хлористым кальцием, фракция перегонялась над металлическим натрием и были определены ее а) удельный всс /Г = 0,8662, б) максимальная анилиновая точка — оказавшаяся равной 47, в) показатель лучепреломления я = 1,4845. [c.42]

    Дробной перегонкой супсинской нефти была выделена фракция для исследования. С помощью серной кислоты из фракции были удалены ароматические углеводороды, после 66 [c.66]

    Исследуемые фракции 60—95° и 95—122° были выделены из скважины Л 19 норийской нефти путем дробной перегонки. Указанные фракции сперва промывались 75%-ной серной кислотой, затем водой, 10%-ным раствором соды, опять водой и после сушки над хлористым кальцием были перегнаны в присутствии металлического натрня в тех же те.мператур-ных интервалах. С целью удаления ароматических углеводородов, фракции были обработаны серной кислотой (уд. вес — 1,865), взятой в количестве 10% к объему бензина. Полнота деароматизации проверялась чувствительным реактивом на ароматические углеводороды (серная кислота-г формалин). Дсароматизированные фракции после соответствующей промывки п сушки над хлористым кальцием были перегнаны в присутствии металлического натрия. [c.71]

    Исследуемая фракция 122—150° была выделена из норийской нефти скважины № 23 путем фракционированной перегонки. Эта фракция сперва промывалась 75%-ной серной кислотой, затем Ю о-ным раствором соды и дистиллированной водой, после сушки над хлористым кальцием перегонялась в нрисутствиц металлического натрия в том же температурном интервале. [c.76]


    Объектом исследования была взята фракция 150—200° среднего образца. мирзаанской нефти. Опа была выделена из нефти дробной перегонкой. С целью удаления неуглеводородных комиоиентов, входящих во фракцию 150—200° мирзаанской нефти, указанная фракция была обработана 75%-ной серной кислотой. После обработки серной кислотой указанной концентрации, фракция была промыта дистиллированной водой, 10%-ным раствором соды, снова дистиллированной водой до нейтральной реакции, сушилась над хлористым кальцием и перегонялась в присутствш металлического натрия. [c.92]

    Для исследования была взята средняя проба 1 участка мир.заанекой нефти, из которой фракционной перегонкой была выделена фракция с температурой кипения 150—200°. Фраг уня подвергалась промывке 75%-ной серной кислотой, 5%-иым раствором соды и дистиллированной водой, затем сушилась над хлористым кальцием и перегонялась в присутствии металлического натрия в тех же температурных пределах. Для исследуемой фракции определялись физические свойства максимальная анилиновая точка, удельный вес и показатель лучепреломления, значення которых приведены в табл. 1. Применяемый в опытах анилин нмел температуру замерзания —6,3°. [c.109]

    Дробной перегонкой супсинской нефти из скважины № 5, с удельным весом 0,905, отобрали фракции 60—95°, 95—122°, 122—150° и 150—200°, которые после многократной перегонки не давали характерную реакцию на непредельные углеводороды. Отобранные фракции встряхивались с 75%-ной серной кислотой в течение 10 минут, затем промывались водой, 10%-ным раствором соды, снова водой, сушили над хлористым кальцием и перегоняли в присутствии металлического натрия. Для вышеуказанных фракций были определены удельный вес, показатель лучепреломления и анилиновая точка. В каждом опыте применяли свежеперегнанный анилин, чистоту которого определяли по анилиновой точке индивидуального углеводорода. Затем проводили сульфирование фракции дымящей серной кислотой, содержащей 1,54% свободного серного ангидрида. Смесь бензина и серной кислоты помещалась в склянку и встряхивалась на трясучке в течение [c.137]

    Нефть мирзаанского месторождения из 9, И, 12 и 15 горизонтов подвергалась дробной перегонке. Полученные фрак-нии 60—95°, 95—122°, 122—150°, 150—200 взбалтывались с 75 7о-ной серной кислотой в течение 15 мин., затем промывались водой, 10 %-ным раствором соды, снова водой, сущились над хлористым кальцием и перегонялись в присутствии металлического натрия. Для полученных фракции были определены удельный вес, показатель лучепреломления и анилиновая точка. Для опытов применялся свсжевысушениый и свежеперегнанный анилин, чистота которого проверялась анилиновой точкой индивидуального углеводорода. Ароматические углеводороды выделялись серной кислотой, которая содержала 1,5% свободного серного ангидрида. Смесь бензниа н серной кислоты помещалась в склянку на трясучке и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов контролировалось качественной реакцией (серная кислота + формалин). Деароматизированные фракции промывались, сушились и перегонялись в при- [c.141]

    Материал для исследования получался нами фракционированием нефтей Грузии из различных скважин. Фракции 60—95°, 95-122°, 122—150° и 150—200° не давали качест-векпу1я реакщпо иа непредельные углеводороды, т. е. не реагировали И1Г с бромной водой, ни со слабым щелочны.м раствором перманганата калня. Исследуемые фракции промывались 73%-НОЙ серной кислотой, 10%-ным раствором щелочи, затем водой, сушились над хлористым кальцием и перегонялись в присутствии металлического натрия. Предварительная обработка бензино-лигроиновых фракций 73%-ной серной кислотой, щелочью и затем перегонка над металлическим натрием преследовали цель освободиться от нежелательных сернистых, кислородных и азотистых соединений, которые в качестве примесей могли присутствовать в исследуемых фракциях. Если бензино-лигроииовьте фракции не подвергаются предварительно такой обработке, то указанные выше неуглеводородные компоненты будут удаляться во время деароматизации фракции и последующей за ней промывкой щелочью и перегонкой над металлическим натрием. [c.151]

    На примере норийского бензина было показано, что высушенный над хлористым кальцием и перегнанный в присутствии металлического натрия бензин (фракция 150—200°) имел анилиновую точку 58,2° та же самая фракция норийского бензина, но предварительно промытая 73%-ной серной кислотой, 107о-ным раствором соды, водой, после сушки над хлористым кальцием и перегонки в присутствии металлического натрия имела анилиновую точку 58,9°. Чтобы не сомневаться в том, что повышение анилиновой точки в результате промывки серной кислотой указанной выи е концсктрацшг было вызвано только удалением неуглеводородных прн.мессй бензина, а не удалением ароматических углеводородов, фракция 150—200° норийского бензина обрабатывалась вторично, как указано выше, после чего, однако, анилиновая точка не изменилась. Это указывает на то, что в процессе предварительной обработки бензина прямой гонки серной кислотой указанной выше концентрации ароматические углеводороды не затрагиваются. [c.152]

    Материал для опытов был получен путем фракционированной перегонки сырой супсинской нефти собранные фракции бензольная, толуольная и ксилольная, взбалтывались по 10—15 мин. с 25 объемным процентом серной кислоты удельного веса 1,76, после чего промывались сперва водой, затем Ю-процентным раствором соды, снова водой, сушились над хлористым кальцием и перегонялись над металлическим (в виде проволоки) натрием. [c.187]

    Кислота была взята в количестве 25% от объема бензина, сульфирование продолжалось 5,5 часов в механической трясучке, полнота деароматизацни контролировалась формолитовой реакцией, Деароматизированный бензин промывался 10%-ным раствором соды, водой и после сушки над хлористым кальцием и перегонки в присутствии металлического иатрия для него определялись те же константы, что и до обработки серной кислотой. [c.217]

    Мирзаанская нефть нз скиажины № 140 с удельным весом — 0,8699 несколько раз подвергалась дробной перегонке. Полученная фракция 60—150 взбалтывалась с 75%-ной серной кислотой в теченне 15 мин, после чего промывалась водой, 10%-ным раствором соды, снова водой, сушилась хлористым кальцием и перегонялась в присутствии металлического натрия. Для указанной фракции определялись удельный вес, показатель лучепреломления н максимальная анилиновая точка. Для опытов нрнменялн сухой и свежеперегнанный анилин, чистота которого проверялась посредством анилиновой точки чистого индивидуального углеводорода. Ароматические углеводороды, находящиеся в мирзаанской нефти (фр. 60—150°), удалялись действием серной кислоты удельного веса 1,84. Смесь бензина и серной кпслоты помещалась о склянке с притертой пробкой и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов проверялось качественной реакцией (серная кислота + формалин). Деароматизированная фракция промывалась, сушилась н перегонялась в присутствии металлического натрия, после чего определялись те же константы, что и до обработки серной кислотой. По изменению максимальных анилиновых точек и с применением коэффициентов, приведенных в трудах ГрозНИИ [18] определялся групповой состав вышеуказанной фракции. [c.226]

    В смесительные секции реактора —алкилатора Р в первую секцию виодятся циркулирующая и свежая серная кислота и жидкий изо — бутан. Из отстойной секции алкилатора выводятся продукты алки — лирования, которые после нейтрализации щелочью и промывки водой направляются в колонну К-2 для отделения циркулируемого изобутана. При некотором избытке в исходном сырье предусмотрен е О вывод с установки. Испарившиеся в реакторе изобутан и пропан чэрез сепаратор Р —рессивер компрессором через холодильник подаются в колонну —депропанизатор К—1. Нижний продукт этой колонны — изобутан — через кипятильник и теплообменник присоединяется к циркулирующему потоку изобутана из К — 2. Нижний продукт колонны К-2 поступает в колонну дебутанизатор К-3, а остаток К — 3 — в колонну К-4 для перегонки суммарного алкилата. С верха этой колонны отбирается целевой продукт — легкий алкилат, а с низа — тяжелый алкилат, используемый обычно как компонент дизельного топлива. [c.146]

    Можно привести много примеров, иллюстрирующих такой прием. Очевидно, если примесь представляет собой реагент, можно применять рециркуляцию. Например, если после гидрогенизации присутствует значительное количество олефиновых примесей или после реакции дегидратации остается примесь спирта, то повторная обработка смеси может превратить всю массу примесей в желаемый продукт. Углеводородный продукт реакции, восстановленный по Вольфу-Кижнеру, может быть освобожден от загрязнений азотистыми соединениями при обработке кислотой. Любой непрореагировавший кетон реакции восстановления по Вольфу-Кижнеру, трудно отделимый от соответствующего углеводорода при помощи перегонки, может быть превращен в третичный спирт, содержащий шесть дополнительных атомов углерода, обработкой фенилмагнийброми-дом. Такое высокомолекулярное вещество перегонкой легко можно отделить от желаемого углеводорода. При получении нормальных алкилбро-мидов оставшийся спирт можно удалить экстракцией концентрироваиной серной кислотой на холоду. [c.501]

    Продажный 1-тетрадеканол превращают в бромид действием газообразного бромистого водорода при 110° [29]. Непрореагировавший спирт удаляют из бромида последовательным действием холодной концентрированной серной кислоты, метанола и хлористого кальция, после чего бромид очищают фракционной перегонкой при давлении 20 мм рт. ст. Чистый бромид при взаимодействии с цианистым калием в спиртовом растворе образует н-тетрадсцилцианид, который очищают фракционной перегонкой. [c.512]

    В практике нефтеочистки ранее наблюдались большие потери с образованием смолистых осадков при обработке дистиллятов смазочных масел концентрированной серной кислотой. Потери значительно снижались, если обрабатывались масляные дистилляты, полученные при перегонке под высоким вакуумом, когда крекинг незначителеп или вовсе отсутствует. Хотя нельзя сказать, что причины образования смолистых осадков прн действии концентрированной серной кислоты на вышекипящие нефтяные дистилляты стали внолпе понятны, несомненно, однако, что этот суммарный результат включает реакции серной кислоты с непредельными углеводородами, незначительное сульфирование углеводородов, содержащих в молекуле ароматические кольца, реакцию или растворение сернистых соединений, нафтеновых кислот, азотистых оснований и, возможно, других загрязнений. [c.98]

    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    Однако наконлены значительные сведения относительно действия серной кислоты на сложные смеси олефинов в крекинг-бензинах. Потери в результате растворения и образования кислого гудрона и смол были очевидны, но потерям за счет образования полимеров, как правило, не придавали большого значения в течение некоторого времени, так как ббльшая часть этих полимеров оставалась в высококипящих кубовых остатках, получающихся при повторной перегонке обработанных кислотой дистиллятов, и поэтому их было нелегко измерить [3].  [c.352]

    Была предложена очистка крекинг-керосинов серной кислотой при низких температурах [3,3° С] для улучшения цвета и удаления серы [45]. Такой процесс с последующей повторной перегонкой для уменьшения образования полимеров и потерь, описанной Педжеттом [40], был внедрен в заводском масштабе для очистки бензина с большим содержанием тиофе-новых сернистых соединений [14, 22]. [c.353]

    Завершение второй стадии посредством перегонки продуктов реакции (метод, успешно применяемый нри сульфировании серной кислотой) не может применяться в данном случае из-за их высоких температур кипения. Применение избытка хлорсульфоновой кислоты (в пределах от [c.521]

    Впоследствии более стойкие алкилаты были получены в результате замены толуола бензолом с использованием для алкилироваиия полипропилена вместо триизобутилена (благодаря этому вводилась более стойкая пторичная алкильная группа) и применения более четкого фракционирования конечного продукта. Эти более новые алкилаты напоминают но легкости сульфирования толуол. Однако они отличаются тем, что к ним не применима методика перегонки при парциальном давлении для завершения реакции сульфирования, так как они имеют высокие пределы выкипания и склонность к потемнению и расщеплению, если применяются температуры выше 70 , особенно в присутствии серной кислоты. Кроме того, эти углеводороды лишь с трудом образуют полисульфокислоты или сульфоны и значительно не расщепляются при обработке их концентрированным олеумом и даже серным ангидридом, что обеспечивает применение последнего в качестве сульфирующего агента в виде разбавленных газовых смесей. Следовательно, применение таких сильных сульфирующих агентов пе только возможно, ио и представляется единственным практически применимым методом для достижения полного сульфирования без использования большого избытка кисло гы. При применении серного ангидрида фактические выходы приближаются к теоретическим. [c.534]

    Средние эфиры, образующиеся при взаимодействии серной кислоты с олефинами, содержащимися в крекинг-дистиллятах, растворимы пе только в кислотной, но и частично в углеводородной фазе. Растворимость средних эфиров в углеводородной фазе возрастает с ростом молекулярного веса соответствующего оле-фипа. Средние эфиры с трудом поддаются гидролизу и, следовательно, не отмываются щелочью при защелачиванип. Однако средние эфиры нестабильны и при длительном хранении разлагаются. Наблюдалось выделение сернистого газа и смолообразование в крекинг-бензинах, обработанных серной кислотой. Средние эфиры также легко разлагаются при нагревании [24], так что крекинг-дистиллят, прошедший сернокислотную очистку, после вторичной перегонки обычно вновь требует защелачивания. В нефтезаводской практике вторичную перегонку очищенных крекинг-дистиллятов зачастую ведут под вакуумом, что предотвращает разложение средних эфиров и связанные с этим явления (напрп-мер, порчу цвета) [25]. [c.225]

    Ранее керосин приготовляли из нефтей парафинистого типа, таких, как пенсильванская или мид-континентская. Керосиновые фракции этих нефтей подвергали легкой сернокислотной обработке (расход серной кислоты составлял 0,02 кг л или 1% по объему). Затем продукт подвергали щелочной промывке и вторичной перегонке или адсорбционной обработке. [c.466]

    В химических лабораториях металлически натрий чаще всего используют для обезвоживания диэтилового, или серного, эфира. Вначале эфир перегоняют в приемник с хлоркальциевой трубкой. При помощи щипцов или пинцета вынимают из керосина кусок металлического натрия. Брать его-руками нельзя, так как это может вызвать химический ожог. Извлеченный кусок металлического натрия быстро обтирают фильтровальной бумагой, после чего острым ножом отрезают корочку и обнажают чистый металл. Отрезав пластинку нужной величины, быстро измельчают ее ножом на кусочки размером не более 2 лглг . Оставшийся металлический натрий снова кладут в банку с керосином, туда же опускают корочку мелко нарезанный металлический натрий ножом или пинцетом быстро вносят в сосуд с эфиром. Высушиваемый эфир оставляют над металлическим натрием не менее чем на ночь. После чего эфир отгоняют над металлическим натрием, т. е. не сливая эфир перед перегонкой. Когда эфир отогнан, остатки металлического натрия высыпают в ту же банку с керосином, в которой он хранится. [c.155]

    Агенты нитрования. Наиболее широко применяют азотную кислоту, чистую или в смеси с серной. Чистая азотная кислота является слабым агентом нитрования так как в ходе реакции она разбавляется образующейся водой, необходим большой избыток НЫОд. Для поддержания концентрации нитрующего агента вводят вещество, связывающее воду (обычно НаЗО .илиее непрерывно удаляют (например, азеотропной перегонкой). [c.296]

    Окись меди, подобно серной кислоте, имеет также тенденцию к превращенгш меркаптанов В дисульфиды. При перегонке "нефти в присутствии окиси меди эти последние впрочем могут быть превращены в сернистые алкилы и сернистую медь.  [c.169]

    Эти последние после перегонки представляют собой бесцветные продукты. Они не обладают циклическим строением, слабее взаимодействуют с серной кис-л отой, нежеаш иоходные олефины, и имеют лишь одну двойную связь. Они растворимы в низкокипящих дестиллатах, чем и объясняется увеличение удельного веса, отмеченное Земенеевым, Лисенко и др. [c.181]


Смотреть страницы где упоминается термин Серная перегонка: [c.50]    [c.254]    [c.281]    [c.88]    [c.264]    [c.111]    [c.115]    [c.442]    [c.169]    [c.378]   
Основы общей химической технологии (1963) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Дымящая серная кислота, обработка продуктов перегонки гильсонита

Серная кислота перегонки нефти



© 2024 chem21.info Реклама на сайте