Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитрование агенты

    При расследовании комиссии не удалось установить конкретную причину взрыва в реакторе. Полагают, что разложение реакционной массы было вызвано недостаточным охлаждением и остановкой мешалки. Другой причиной взрыва могла быть быстрая подача нитруемой смеси при недостаточном теплосъеме, что привело к росту температуры и давления в аппарате. Разрыв предохранительной мембраны не обеспечил полного сброса давления, что и привело к разрушению аппарата. Комиссия установила, что нитрующим агентом по существу был ацетилнитрат, образующийся при смешении уксусного ангидрида с азотной кислотой. Известно, что ацетилнитрат СНзСО-ОЫОз мгновенно разлагается под воздействием воды при нагревании. При этом выделяется большое количество тепла и газов. В отсутствие воды ацетилнитрат может сохраняться при температуре ниже 20°С в течение нескольких суток. Как показали расчеты, теплота взрывчатого превращения нитрующей смеси равна 2180 кДж/кг (520 ккал/кг), т. е. потенциальная опасность взрыва создалась еще до начала нитрования, по окончании загрузки азотной кислоты и уксусного ангидрида. [c.362]


    Первые лабораторные опыты газофазного нитрования проводились с нарами азотной кислоты этот нитрующий агент применен также и в промышленном масштабе, как описано в предыдущем параграфе. [c.294]

    Добавки кислорода, хлора или их обоих при одновременном варьировании температуры, объемной скорости и молярном отношении углеводорода к нитрующему агенту позволяют при газофазном нитровании парафиновых углеводородов получать различные выходы каждого из нитропроизводного, смотря по потребностям в них. [c.573]

    В процессах 1-й группы токсичные вещества могут участвовать в качестве исходных, конечных, промежуточных и побочных продуктов. Это значит, что токсичными веществами могут являться исходные и конечные продукты реакции, они могут получаться по ходу основной реакции, которая идет в несколько стадий, и, наконец, могут получаться в результате прохождения побочных реакций. В последнем случае имеют место два варианта побочные реакции или всегда сопутствуют основной или же возникают только при отклонениях от нормального режима работы, т. е. при возникновении аварийной ситуации. Например, в процессах нитрования основным нитрующим агентом является азотная кислота, пары которой обладают токсическим действием. В то же время нитрующие агенты одновременно являются сильными окислителями. Эта двойственная природа нитрующих агентов делает возможным возникновение множества побочных реакций при нарушениях нормального режима. Одним из продуктов побочных реакций являются окислы азота, обладающие сильными токсическими свойствами. [c.13]

    Поскольку нитрование можно проводить как азотной кислотой, так и двуокисью азота, Бахман и другие предположили, что нитрующим агентом является N02, которая образуется, но-видимому, следующим образом  [c.81]

    Для нитрования может также применяться азотная кислота в смеси с другими кислотами, кроме серной. Иногда используется смесь азотной кислоты с уксусной кислотой и уксусным ангидридом. Эта смесь, вероятно, содержит некоторое количество ацетилнитрата Hз 00N02, который, как известно, является сильным нитрующим агентом. Смесь азотной и фтористоводородной кислот применяется при нитровании бензола. Реакция идет гладко, без образования динитробензола и других продуктов нитрования или фторирования бензола. Предлагалось применение фосфорной кислоты и фосфорного ангидрида в нитрующих смесях. Хотя оба эти соединения являются хорошими дегидратирующими агентами, они оказались не очень эффективными промоторами ионизации азотной кислоты и поэтому не дают хороших нитрующих смесей. [c.544]


    Во время второй мировой войны был разработан способ непрерывного нитрования, проводимый под давлением [7]. Поэтому в настоящее время можно нитровать в жидкой фазе парафиновые углеводороды, кипящие ниже 180° (например, гексан, гептан и др.), если в качестве нитрующего агента применять четырехокись азота, которая смешивается с парафиновыми углеводородами в любых отношениях. [c.266]

    В качестве нитрующего агента могут применяться разбавленная азотная кислота, а также растворы азотной кислоты в уксусной кислоте и ее ангидриде, однако эти методы нитрования менее распространены. [c.437]

    При проектировании и монтаже оборудования и трубопроводов для процессов нитрования большое внимание должно уделяться разработке мер, полностью исключающих возможность контакта нитрующего агента с органическими веществами и образования застойных зон в аппаратах и трубопроводах. Необходимо разделять воздушки сборников и аппаратов с нитруемыми и нитрующими веществами, а также оснащать емкости для нитрующих продуктов средствами противоаварийной защиты предохранительными разрывными мембранами и блокировочными устройствами, обеспечивающими прекращение заполнения емкостей и быстрое удаление находящихся в них продуктов. [c.363]

    Такое же благоприятное влияние оказывают галогены. Они обра-З уют свободные радикалы, как это уже известно, из реакции хлорирования. Образующийся галоидоводород опять окисляется в свободный галоген, и последний действует снова радикалообразующе. По этой причине для ускорения реакции нитрования галогена требуется значительно меньше, чем кислорода. Кроме того, галогены оказывают благоприятное действие вследствие того, что они соединяются с окисью азота в хлористый нитрозил и тем самым не происходит обрыва цепи. Кислород в условиях газофазного нитрования не может так быстро окислять N0 в ЫОг- Азотная кислота, как и N02, может употребляться как нитрующий агент. Действие азотной кислоты основывается лишь на том, что она поставляет N02 это происходит путем термического разложения ННОз0H + N02. Распад с образованием радикалов также объясняет, почему с азотной кислотой получаются лучшие результаты, чем с N02 [89]. При разложении азотной кислоты образуются чрезвычайно активные гидроксильные радикалы, которые при взаимодействии с углеводородом сразу же образуют алкильные радикалы НН + ОН-> К + Н20. Поэтому, как нашел Бахман с сотрудниками, добавка кислорода прн нитровании с двуокисью азота имеет относительно больший эффект, чем при применении самой азотной кислоты. Но и N02, как таковая, способствует образованию радикалов и одновременно нитрует. [c.285]

    Природа агента нитрования практически не изменяет изомерного состава продуктов реакции. Так, нитрование толуола смесью НМОз, НаЗОа и нитратом ацетила приводит практически к одинаковому соотношению количеств продуктов реакции. [c.300]

    Процесс может осуществляться как в паровой, так и жидкой фазе. Наибольшее распространение получило парофазное нитрование. Нитрующим агентом, как правило, является или азотная кислота или окислы азота. Возможно также нитрование при помощи органических или неорганических нитратов. [c.126]

    Азотная кислота (реже оксиды азота) служит вторым по масштабам применения окислительным агентом. Ее действие нередко сопровождается побочным нитрованием органического соединения, усиливающимся с повышением концентрации кислоты. По этой причине для окисления используют 40—60%-ную НЫОз. Азотная кислота как окислитель никогда не применяется для реакций с парафинами. Для нес наиболее типичны реакции деструктивного окисления циклических соединений и веществ с ненасыщенными связями, идущие с участием НЫОз с лучшим выходом, чем при окислении кислородом  [c.354]

    Проводя нитрование в лабораторных условиях, вещества А и S смешивали в мольном соотношении 2 1 в присутствии водоотнимающего агента. После того, как в течение 40 мин прореагировала 1/3 начального количества вещества А, в смеси обнаружили 21% R, 72% S и 7% Т. Пользуясь этими данными, рассчитать состав смеси (количества веществ А, В, R, S т Т) в промышленном реакторе, в который загружено 1433 кг вещества А и 571,5 кз вещества В. Процесс осуществляют в условиях, аналогичных лабораторным. Продолжительность операции 90 мин. [c.201]

    При использовании двуокиси азота в качестве нитрующего агента (испытывалась опытная установка процесса) нитрование пропана проводилось при 300 0 и давлении 1 МПа. Выход нитропарафинов на превращенный пропан составил 75—80%, а ла двуокись азота — около 90%. Установлено, что добавка кислорода к двуокиси азота ускоряет реакцию нитрования и увеличивает выход. [c.439]

    Примерами реакций электрофильного замещения могут служить многочисленные реакции замещения в ароматическом ядре. Наиболее изученной из них является реакция нитрования. Атакующим агентом в этом случае служит катион нитроний N03 , который образуется в смеси серной и азотной кислот по брутто-реакции [c.118]


    По теории Мак Клири и Дегеринга [81] при нитровании диизопро-пила все же образуются ожидаемые мононитропродукты в форме низкомолекулярных нитроларафинов. В присутствии катализаторов температура реакции при газофазном нитровании снижается почти до 200 . Увеличив время протекания реакции в 100 раз и применив в качестве нитрующегося агента четырехокись азота, Леви удалось изолировать динитросоединения. Это наблюдение не удалось подтвердить [101]. [c.294]

    В предложенном механизме электрофильный агент показан как уже образовавшийся в условиях реакции и принимающий в ней участие. Так происходит, по-видимому, при меркурировании, где реакция, вероятно, включает участие иона двухвалентной ртути (до некоторой степени сольватированного), и при нитровании смесью кислот, где в качестве промежуточного соединения, как было показано, должен участвовать питроний-ион NOj . Галоидирование при обычных условиях, по-видимому, не включает участие положительно заряженных промежуточных соединений, как С1 и Вг" , но вместо них, вероятно, включает образование поляризованных молекул галоидов, которые переносят эти промежу- [c.410]

    Уже отмечалось, что степень л-замещепия в толуоле возрастает в следующем порядке бромирование < нитрование < введение изопропила. Как будет показано ниже, фактическими замещающими агентами, принимающими участие в этих реакциях, являются, как предполагается, Вгз, NOa, (СНз)2СН . Предсказанный порядок изменения электрофиль-ности этих частиц является таким же Вг2< NOf < (СНз)2СН . Поэтому так называемая активность замещающего вещества, несомненно, связана с его электрофильными свойствами. [c.424]

    Влияние заместителей на реакционную способность ароматического ядра и ориентацию вступающей нитрогруппы такое же, как при других реакциях электрофильного замещения в ароматическое ядро. Ввиду значительного дезактивирующего влияния нитрогруппы каждая последующая стадия нитрования протекает значительно медленнее предыдущей l(k //г -lXl]. Поэтому реакцию л/ожно осуществить с высоким выходом любого из продуктов последовательно-параллельного замещения (моно-, ди- или три-нитролроизводных), подбирая силу нитрующего агента и температуру. Так, при нитровании толуола вначале в более мягких условиях (40°С) образуются мононитротолуолы (смесь 58—59% орто-, 4—5% мета- и 36—39% паро-изомеров), которые затем в более жестких условиях (70—80°С) дают дннитротолуолы (смесь в ос-новнсм 2,4- и 2,6-изомеров) и в конце концов — тринитротолуол  [c.343]

    Раствор азотной кислоты в сорной является столь энергичным нитрующим агентом, что изучать кинетику нитрования этим реагентом можно только прил10няя ароматические соединения низкой активности. [c.449]

    Бенфорд и Инголд [2] указали на аналогию, существующую между нитрованием и другими электрофильными реакциями замещения, такими, например, как бромирование. Эффективность бромирующего агента ХВг [c.555]

    Найдено, что при проведении нитрования для препаративных целей наиболее эффективными нитрующими агентами являются смеси, состоящие из концентрированных азотной и серной кислот. Роль серной кислоты, в смеси этих кислот часто приписывают ее эффективному связыванию воды, образующейся в результате реакции. Серная кислота не может заставить реакцию дойти до конца в результате простого удаления воды, поскольку реакция нитрования является необратимой реакцией. (Это отличает ее от реакций нитрования спиртов, которые не дают нитросоединений, а образуют сложные эфиры азотной кислоты здесь же серная кислота действует как дегидратирующий агент.) Данные, говорящие в пользу существования иона нитрония, и вероятность, что он должен быть сильным нитрующим агентом, заставляют предполагать, что действие серной кислоты можно объяснить ее сильной кислотной природой, обусловливающей индуцирующий эффект ее на образование иона нитрония  [c.558]

    Агенты нитрования. Наиболее широко применяют азотную кислоту, чистую или в смеси с серной. Чистая азотная кислота является слабым агентом нитрования так как в ходе реакции она разбавляется образующейся водой, необходим большой избыток НЫОд. Для поддержания концентрации нитрующего агента вводят вещество, связывающее воду (обычно НаЗО .илиее непрерывно удаляют (например, азеотропной перегонкой). [c.296]

    Наиболее энергичными агентами нитрования при низкой (О — 15 °С) температуре являются нитраты ацетила СНзСООЫОг и бензоила 6HJ 00N0.2, которые используют в растворах СС14 илн [c.296]

    Окислы азота, в частности ЫОа и N304, могут служить агентами нитрования в присутствии Н2504 (или катализаторов), например  [c.297]

    Свойства и применение. Низшие нитропарафины при обычной температуре —жидкости (нитрометан кипит при 102 °С, нитроэтан — при 114,8°С, 1-нитропропан—при 131 °С тетранитрометан при 125,7 °С разлагается) их плотности составляют от 1,14 (нитрометан) до 1,002 (1-нитропропан). Они широко применяются как растворители (ацетата целлюлозы при экстракции ароматических углеводородов, хлористого алюминия при алкилировании и полимеризации), пластификаторы, карбюранты для реактивных двигателей, взрычатые вещества. Тетр а нитрометан часто используют как агент мягкого нитрования, так как он менее коррозионноактивен, чем HNO3, а также в качестве добавки для повышения цетанового числа дизельных топлив. [c.310]

    С целью выделения толуола, пригодного для нитрования, на заводе Панамерякен Рифайнинг компани в Тексас Сити, использующем в качестве разделяющего агента фенол, в стадии экстрактивной ректификации применялась колонна диаметром [c.273]

    Для процессов нитрования характерны все вышеуказанные причины возникновения аварийной ситуации. Так, при увеличении скорости подачи азотной кислоты увеличивается скорость протекания реакции, увеличивается количество выделяющегося тепла, растет температура, начинают преобладать окислительные реакции, связанные с образованием окислов азота. В результате возможен выброс реакционной массы и токсичных газов через неплотности реактора и даже, если процесс протекает интенсивно, взрыв большой разрушитедънод силы. Эта ситуация моягет возндкнуть, если в результате отказа регулятора температуры регулирующий клапан на линии подачи нитрующего агента полностью откроется. Если осуществляется дозирование компонентов, к этому же приведет отказ дозатора. [c.15]

    Нитрование сульфокислот может привести к замещению сульфогруппы, что особенно часто имеет место в случае фено.лсульфо-кислот, а также и в других случаях при применении в качестве нитрующего агента окислов азота [178]. За исключением замещения сульфогруппы, основной ир1терес, представляемый реакциями нитрования сульфокислот, заключается в тех указаниях, которые они дают о направляющем влиянии сульфогруппы. Полученные-до сего времени данные, не упомянутые в тексте, приведены в помещенных ниже таблицах. [c.223]

    Процессы нитрования оформляются различно в зависимости от разработанности технологии и технологического оборудования. Обычно первым вариантом, по которому запускается процесс является периодическое или, чаще, полунепрерывное оформление. В этом последнем случае один из компонентов реакции — нитруемый или нитрующий агент — загружается в реактор до-начала процесса, а другой компонент — нитрующий или нитруемый агент — равномерно приливается в течение определенного, времени. Во время нриливания в реакторе поддерживается определенная регламентом температура, давление в реакторе определяется гидравлическим сопротивлением ловзпшек для выходящих из реакционной массы при нитровании газообразных веществ. В таком, примерно, оформлении внедрялся процесс нитрования-пиридона. [c.183]

    Скорость нриливания нитрующего агента может измениться в нежелательном направлении при отказе технологического оборудования (системы дозирования или подачи) или при отказе истемы регулирования расхода нитрующего агента (измерителя расхода, регулятора, исполнительного механизма или клапана). При увеличении скорости при.т1ивания нитрующего агента газо-выделение интенсифицируется за счет увеличения массы вступающих в реакцию веществ за единицу времени. Поскольку реакция нитрования экзотермическая, одновременно увеличивается выделение тепловой энергии, что при стабильном теплоотборе должно вызвать повышение температуры реакционной массы. [c.186]

    Качественное исследование процесса нитрования пиридона осуществлялось на лабораторной установке путем подачи скачкообразных возмущаюш,их воздействий. При скачкообразном увеличении скорости нриливания нитрующего агента (азотной кис-.лоты) давление в реакторе также скачкообразно возрастало после чего несколько снижалось и вновь плавно возрастало уж после возвращения скорости прилива кислоты к исходной величине. Скачкй давления особенно опасны в начале процесса нитрования, когда количество непрореагировавшего нитруемого вещества в реакторе значительно. [c.187]

    Технологическая схема и АСУ полунепрерывным процессом нитрования показана на рис. 4-5. В нитратор 1 загружается нитруемая смесь и подачей горячей воды (или пара) в рубашку при работающей мешалке производится подъем температуры нитруемой смеси до температуры реакции, после чего начинается прилив нитрующей смеси из мерника 2. Во время нриливания нитрующей смеси в рубашку нитратора непрерывно подается охлаждающий агент (вода). Выделяющиеся в ходе реакции газообразные продукты отводятся на ловушку окислов азота 3. По окончании слива полной регламентной > дозы нитрующей смеси пронитрованная смесь охлаждается и сливается в аппарат 4 для последующего выделения и обработки продукта. Аппарат 4 может служить также для приема реакционной массы в случае ее сброса из реактора при возникновении аварийной ситуации. В этом случае в него перед началом нитрования заливается разбавитель (например, вода). [c.192]

    Сульфирование нитробензола олеумом [202] проводилось при разных температурах вплоть до 150—160°. При 60—90° получается не более 2—3% л-нитробен-золсульфокислоты [34, 203], а остальная масса продукта составляет / ета-изомер. Хотя в некоторых старых работах [204] выражалось предположение о наличии в реакционной массе также орто-изомера, фактически не было обнаружено даже и следов последнего. Иная картина наблюдается при нитровании бензолсульфокислоты [203, 205]. В этом случае образуются все 3 изомера, причем их относительные количества зависят от условий реакции. Добавление 5% ртути при сульфировании нитробензола при 90° ведет к образованию 75% м- и 25% л-сульфокислоты [34]. Если вместо нитробензола взять о-нитрофенил-мер-курхлорид, продукт реакции зависит от типа сульфирующего агента с 92%-ной серной кислотой получается 95% мета- и 5% иара-изомеров, с 20%-ным олеумом — 94% ортю- и 6% мета-изомеров, что можно объяснить, исходя из двух типов реакций, в которые могут вступать ароматические соединения ртути  [c.35]

    В качестве нитрующих агентов в проК1ышленности используется 40— 75%-ная азотная кислота и четырехокись азота. В процессе нитрования парафинов нитрогруппа замещает водородные атомы, связанные с атомами углеродг , реакционная способность котмых снижается в последовательности третичный > > вторичный > первичный. С повышением температуры различия в реакционной способности несколько нивелируются и образуются смеси изомеров. (. [c.437]

    Способы введения нитрогрпуппы. Верующие агенты. Защита аминогруппы. Меры предосторожности при нитровании. [c.197]

    Типичным примером гетеролитической реакции может служить нитрование ароматических соединений, при котором активным агентом является ион нитрония МО ]". В молекулах типа СаНаХ (где Х=СНз, Р, С1, ОН или NH2) замещение происходит в основном в ор-то- и пара-положениях, а в молекуле С ИбНОз — в мета-положении (см. стр. 44). Молекулярные диаграммы анилина и нитробензола показывают, что в молекуле анилина л-электронами обогащены атомы углерода в орто- и пара-положениях, тогда как в нитробензоле самая высокая электронная плотность в кольце сосредоточена в метаположении. Поэтому положительно заряженный ион N0 в одном случае атакует атомы углерода в орто- и пара-положениях, а в другом случае —в мета-положении. [c.43]

    Нитрование. Обычно используют азотную кислоту [50]. Под давлением можно нитровать углеводороды, кипящие нпже 180 °С, если в качестве нитрующего агента применять четырехокись азота (N204), которая смешивается с алканами в любых соотношениях. При прямом нитровании образуются смеси различных изомерных нитросоединений. Первичные и вторичные нитроалканы дают растворимые в воде соли, тогда как третичные со щелочами не реагируют. Газофазное нитрование низкомолекулярных углеводородов протекает по цепному механизму согласно уравнениям [51]  [c.203]


Смотреть страницы где упоминается термин Нитрование агенты: [c.83]    [c.545]    [c.555]    [c.563]    [c.148]    [c.294]    [c.14]    [c.272]    [c.199]   
Химия и технология соединений нафталинового ряда (1963) -- [ c.67 , c.69 ]

Технология нефтехимических производств (1968) -- [ c.37 , c.296 , c.297 , c.301 ]

Микро и полимикро методы органической химии (1960) -- [ c.266 ]




ПОИСК







© 2025 chem21.info Реклама на сайте