Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы форма

    Под математической моделью (математическим описанием) понимается совокупность математических зависимостей, отражающих в явной форме сущность химического процесса и связывающих его физико-химические, режимные и управляющие параметры с конструктивными особенностями реактора. В общем случае математическая модель химического реактора должна состоять из кинетических уравнений, описывающих зависимость скорости отдельных реакций от состава реагирующих веществ, температуры и давления, из уравнений массо-теплообмена и гидродинамики, материального и теплового балансов и движения потока реагирующей массы и т. д. [c.7]


    Здесь снова следует отметить границы области, представляющей для нас интерес. Вопросами конструкции реакторов мы будем заниматься лишь попутно, так как эти вопросы являются слишком узкими п специальными. Наша цель — составить разумную математическую модель процесса и на ее основе разработать рациональную схему расчета. Слово разумная означает в данном контексте, что модель должна учитывать все характерные черты реактора, но не быть перегруженной деталями, иначе анализ п расчет процесса станут невозможны. Например, при составлении математической модели реактора с мешалкой можно предположить, что в реакторе достигается режим идеального смешения это даст рациональные методы расчета реактора и анализа его устойчивости и вопросов управления процессом. Далее мы можем исследовать способы описания характера смешения и посмотреть, как влияет неполнота смешения на характеристики ироцесса. Но мы не будем интересоваться формой лопасти мешалки или тем, как надо устраивать перегородки в реакторе для улучшения перемешивания. Четыре рассматриваемых тппа реакторов указаны на рисунке. [c.8]

    Трубчатые реакторы разнообразны по размерам и форме — от труб длиной в километр со сравнительно медленным движением реагентов до коротких труб в высокотемпературных печах, через которые реагирующая смесь проходит с почти звуковой скоростью. Трубчатые реакторы с неподвижным слоем катализатора могут варьироваться в размере от промышленных реакторов высокого давления длиной 15 м до лабораторного дифференциального реактора в несколько сантиметров длиной. Поэтому любая классификация, например представленная на рис. IX.1, поневоле будет упрощенной. [c.253]

    Для контроля фактических температур стенок корпусов и штуцеров на всех реакторах установок каталитического риформинга и гидроочистки должны быть установлены поверхностные термопары. Схема расположения термопар для замера фактических температур стенок корпусов и штуцеров реакторов различных установок показана на рис. 3. Фактические температуры стенок корпусов и штуцеров учитывают по специальной форме данные ежедневного учета суммируют в месячных и годовых отчетах и хранят как дополнение и неотъемлемую часть к паспорту на каждый аппарат. [c.87]

    Измерение пределов взрываемости. Измерение концентрационных пределов распространения пламени иногда связано со значительными методическими трудностями. Необходимо составить однородную смесь заданного состава, ввести ее при определенном давлении и температуре во взрывной реактор, форма и размеры которого должны исключать заметную теплоотдачу в стенки при горении и гарантировать его стационарность. Далее необходимо поджечь исследуемую смесь достаточно сильным импульсом, энергия которого заведомо больше mm возникшее пламя должно распространяться снизу вверх. Методические трудности при выполнении этих задач тем больше, чем выше обш,ее давление исследуемой смеси, а нри работе с паро-газовыми смесями — чем выше температура, при которой давление насыщенного пара наименее летучего компонента достигает его парциального давления в исследуемой смеси, т. е. чем выше его точка росы. [c.53]


    Если коэффициент продольной диффузии принять равным нулю, уравнение (10.30) переходит в классическую форму, относящуюся к реактору идеального вытеснения. Полная конверсия, которая может быть при этом получена, равна конверсии в реакторе периодического действия с общим временем пребывания [c.121]

    Рассмотрим теперь задачу расчета реактора, поставленную в иной форме. Пусть требуется получить один из продуктов реакции, скажем, А в заданной концентрации Тогда степень полноты реакции Е = (71 — Су у)1а-1 фиксирована. Если температура процесса также задана, то задача тривиальна, так как формулы [c.166]

    Кривая пересекает вертикальную линию и0/У=1 в точке 1—е К Если существуют застойные зоны (рис. МО, г), то они увеличивают время нахождения частиц в реакторе. Форма кривой Р, несомненно, зависит от функции распределения времени пребывания частиц в реакторе. Такой график можно получить, используя данные опыта по введению в основной поток вещества меченых частиц, например жидкости другого цвета. [c.30]

    Среди большого разнообразия возможных моделей реакторов форма уравнения (III, 24) уникальна. Более того, это фактически почти единственное обыкновенное дифференциальное уравнение с несколькими переменными, которое можно решить аналитически. Его решение может быть найдено методами матричной алгебры. [c.65]

    Равенство (11.14) по форме аналогично равенству (П.9) для реактора непрерывного действия полного вытеснения. Здесь т — расчетное время, которое при полном перемешивании можно считать фактическим временем пребывания компонентов в реакторе. Изменение концентраций во времени и локально для [c.20]

    В дальнейшем ряд исследователей развили этот метод применительно к условиям быстрого потока газа. В.Л.Тальрозе и А.М. Додонов создали метод масс-спектрометрического зондирования диффузионного облака в потоке по оси цилиндрического реактора, где скорость потока имеет максимальное значение. Диффузионное облако в этом случае имеет вытянутую вдоль оси реактора форму. [c.110]

    Развитие процессов в реакторе в большей степени зависит от особенностей ноля скоростей насадки в различных сечениях и определяется конструктивной формой реактора. Форма реактора качественно удовлетворительна, если поля скоростей насадки в реакторе характеризуются достаточной для практики симметрией и равномерностью и при этом отсутствуют застойные зоны. [c.52]

    Гидрирование происходит в реакторе, форма которого (цилиндр диаметром 1,8 см, высотой 32 см) выбрана таким образом, чтобы можно было наблюдать влияние процессов диффузии. Катализатор нанесен тонким однородным споем на дне реактора, установленного вертикально, и представляет собой палладий, осажденный на алюминии (промышленные образцы цилиндрической формы, содержащие приблизительно 0,5% палладия), или никель, полученный при восстановлении окиси никеля водородом при 350 С. Цилиндрические образцы первого катализатора тонко измельчались. Приведенный вес образцов соответствует полному весу порошка. [c.20]

    Слой порошкообразного твердого вещества (1 г в каждом опыте) находился на дне реактора. Форма слоя — приблизительно прямоугольная с длиной 10 см (хсе) и шириной 2 см. Для определения средней величины диффузионного потока его рассматривали относительно поверхности площадью 20 см . [c.148]

    Задачи расчета реактора можно поставить в различной форме. Если, например, требуется вырабатывать кг ч вещества при [c.264]

    Исторически в исследованиях наибольшее распространение получил метод физического моделирования, согласно которому связи между физическими величинами устанавливаются только в пределах данного класса явлений. В таком случае основные уравнения, опис ыв щие процесс, преобразуются в группу критериев подобия, которые являются инвариантными к масштабам реактора. Это позволяет результаты исследований на модели переносить (масштабировать) на промышленный аппарат. Поскольку химический процесс характеризуется одновременно р личными классами физических и химических явлений, то при физическом моделировании его с изменением масштаба физической модели реактора инвариантности критериев подобия достичь не удается. Стремление сохранить при изменении масштабов постоянство одних критериев приводит к изменению других и в конечном счете к изменению соотношения отдельных стадий процесса. Следовательно, перенос результатов исследования с модели реактора на его промышленные размеры становится невозможным. При математическом моделировании указанное ограничение автоматически снимается, так как необходимости в переходе от основных уравнений к форме критериальной зависимости здесь нет, нужно иметь лишь описание химического процесса, инвариантного к масштабам реактора. При этом количественные связи, характеризующие процесс, отыскиваются в форме ряда чисел, получаемых как результат численного решения на электронных вычислительных машинах. [c.13]


    Еслп диффузии нет, то каждый элемент потока проходит реактор, не взаимодействуя с другими, и, следовательно, ведет себя как маленький периодический реактор со своим собственным временем реакции. Рассмотрим изотермический трубчатый реактор, имеющий форму цилиндра радиусом а. Пусть линейная скорость потока на расстоянии ра от оси реактора равна V (р) при этом средняя скорость определяется как [c.288]

    В реальных условиях кривую дифференциальной функции распределения можно снять лишь в реакторе с ограниченной длиной, т. е. про О I = Ь, но описывающее ее уравнение получается в форме бесконечного сходящегося ряда [28] и практическое использование этого уравнения возможно лишь при значительных упрощениях, приводящих к большим искажениям при обработке результатов опыта [891. [c.50]

    Реактор представляет собой вертикальный стальной цилиндр с конусными днищами. Иногда верхнее днище делается сферической формы. Внизу реактора закреплена решетка, выполненная из ряда балок. Решетка служит для равномерного распределения катализатора и сырья по поперечному сечению реактора, а также является опорой для плотного кипящего слоя катализатора. В верху реактора установлены циклоны. Продукты крекинга — газы и пары — из циклонов направляются в ректификационную колонну. Выше распределительной решетки имеется вертикальная перегородка, образующая с одной стороны реактора секцию для отпарки отработанного катализатора. Обработанный водяным паром катализатор поступает из этой секции по трубопроводу в узел смешения с воздухом. [c.127]

    Конструктивные формы современных установок каталитического крекинга были созданы не сразу. Они сложились в итоге внесения ряда существенных изменений в ранее реализованные проекты. На протяжении всего периода развития промышленного каталитического крекинга с циркуляцией катализатора общим для всех установок данного назначения являлось применение на каждой из них одного реактора, а не последовательно работающих двух или трех . Установки с параллельно работающими реакторами встречаются редко. [c.96]

    Установки первой подгруппы характеризуются разнообразием конструк гав-ных форм, хотя проекты их и выполнены на базе одних и тех же общих положений, специфичных для данной системы крекинга. Ниже рассмотрен ряд конструкций реакторов и регенераторов. [c.108]

    Катализатор ссыпается через диафрагму центрального штуцера на конус отражательного устройства, состоящего из концентрически расположенных цилиндра и внутреннего конуса. Поток частиц катализатора, про ходящих через отверстие кольцевой формы между упомянутыми двумя элементами отражательного устройства, образует завесу вокруг разбрызгиваемой струи жидкой загрузки реактора. Направленный поток капель сырья распределяется на свободно падающих горячих частицах катализатора и еще до входа в слой нагревается за счет их тепла. [c.112]

    Корпус реактора промышленной крекинг-установки флюид имеет форму цилиндра с конусными (рис. 71) или выпуклыми полусферическими днищами. Угол ы кду образующими конуса [c.145]

    Рассмотрим, в какой же мере достоверно описывает процесс простая одномерная модель В частности насколько однородны условия по сечению реактора Терни и другие исследователи (см. библиографию на стр. 301) нашли, что в случае частиц неправильной формы небольшое увеличение пористости слоя вблизи стенки исчезает уже на расстоянии от стенки, равном одному диаметру частицы, и доля свободного объема остается постоянной до центра слоя. В слое частиц более правильной формы доля свободного объема, начиная от стенки реактора, быстро уменьшается, а затем приближается к среднему значению, совершив два-три затухающих колебания. Например, для цилиндров в слое, имеющем диаметр, который в 14 раз превышает диаметр частицы, доля свободного объема на расстоянии 0,5 1,0 1,5 2,0 2,5 и 3,0 диаметра частицы от стенки реактора может быть равна соответственно 0,15 0,31 0,20 0,27 0,22 и 0,25, причем средняя пористость составляет 0,25. Очевидно, неоднородность несущественна в слое частиц неправильной формы или при очень большом отношении диаметра слоя к диаметру частицы. Торможение потока у стенки компенсирует влияние большой локальной пористости слоя, поэтому наиболее высокие скорости потока должны наблюдаться на расстоянии порядка диаметра частицы от стенки реактора. Однако об этом трудно сказать что-либо определенное, так как во многих промышленных реакторах форма поперечного сечения слонша, а характер упаковки частиц катализатора неизвестен. По-видимому, влияние неоднородности слоя настолько невоспроизводимо и в то же время незначительно, что его не стоит учитывать при разработке более детализированной модели слоя. [c.263]

    Обычно в технике используют ряд качественных и полуколиче-ственных приближений, поскольку строго описать даже экспериментальную кривую распределения не всегда удается. Мы уже говорили, что чем меньше время полного смешения по отношению к т, тем ближе реактор к модели РИСНД. Считается, что если это отношение 1/10, то обеспечивается достаточно хорошее приближение к идеальному реактору. Форма кривой распределения очень сильно зависит от конструкции аппарата (формы и расположения мешалки, входа и выхода). При проектировании реактора достаточно точно учесть эти факторы невозможно, поэтому обычно характер перемешивания определяют уже на готовом реакторе. [c.310]

    На рис. 149 представлена схема реакторного блока с параллельным расположением реактора и регенератора и транспортом катализатора в потоке высокой концентрации. Регенерированный катализатор из регенератора 2 по напорному стояку поступает в пневмоствол, имеющий форму петли или лиры. В верти-кальш11Й участок пневмоствола подается горячее жидкое сырье. Кон-тактируясь с горячим катализатором, оио испаряется и служит транспортирующим агентом наряду с водян1лм паром, также подаваемым в ппевмоство.тт. Вместе с теле реакция крекинга начинается непосредственно 1 пневмостволе. [c.286]

    При избытке водяного пара порядка 10—15 модой на 1 моль бутена последний дегидрируется примерно па 25%. Предварительно пар перегревается до 700°, бутеновая смесь до 530°. Оба газа смешиваются и в течение около 0,2 сек. пропускаются над катализатором, имеющ,им форму таблеток и находяш,нмся в трубках из легированной стали. Температура дегидрирования на входе в печь около 670°. Разница между температурами на входе и выходе равна примерно 25°, что объясняется эндотермическим характером реакции. В некоторых установках, чтобы обеспечить возможность непрерывного ведения процесса, пмеется два реактора, из которых в одном все время происходит регенерация. Последнюю проводят нрекраш ая подачу бутена в реактор. Перегретый водяной пар реагирует с высокоактивным коксом с образованием водяного газа. [c.86]

    Этот процесс можно детальнее пояснить на следующем примере. Твердый парафин, хлорированный до содержания хлора 19,5%, ра.ч-бавляют 2007о объемн. керосина, не содержащего ароматических компонентов. Полученный раствор направляют в вертикальный колонный реактор, заполненный фарфоровыми кольцами Рашига, к которым добавлено в соответствуюшей форме Ю % вес. металлического алюминия и 1 % вес. металлической меди. Температуру в реакторе поддерживают 170  [c.242]

    Марганец применяют вместе с щелочью в виде стеарата или солей жирных кислот, получающихся в само.м процессе. Наиболее простой и распространенной формой марганца является перманганат калия, которого расходуют около 0,3% от веса парафина [61]. Этим самым образование оксикислот сводится до минимума [62]. Оптимальное количество щелочи соответствует 0,05% NaaO, поэтому достаточно даже того незначительного количества мыла, которое вносится в реактор для окисления вместе с обратным парафином. [c.450]

    Геометрические места точек с максп.мальпой температурой для противоточного реактора с внутренним теплообменом (рис. IX.11, г) показаны (при различных значениях V) на рпс. IX. 13. В этом случае очень легко указать форму таких кривых. Чтобы отношение Л/  [c.278]

    Катализатор КИФ —2 характеризуется достаточно высокой активностью, продолжительным сроком службы, удобными размерами и формой гранул, позволяющей использовать его одновременно как ректификационную насадку. Сочетание реактора с рек — тгсфикацией в одном реакционно —ректификационном аппарате позволяет  [c.150]

    Частицы одинакового размера правильной, но несферической формы, могут быть также уложены в определенном порядке При регулярной укладке цилиндров одинакового Лзмера пороз ность мол<ет достигать минимального значения етш = 0,096 Тела с плоскими гранями, такие, как кубы или тетраэдры, мо гут быть уложены в сплошную кладку с е = 0. Однако при не упорядоченной засыпке их в реактор подобные элементы обра зуют слой со значениями е, меняющимися примерно в том же интервале, что и для шаров, т. е. 0,4 [13]. [c.12]

    В химической промышленности для химических реакций в различных производственных процессах придменяются сосуды разной формы. Хотя часто речь идет о сосудах, работаюш,их под давлением в сходных производственных условиях, названия их различны в зависимости от характера технологического процесса автоклавы, реакторы, нитраторы, сульфураторы, полимеризаторы или варочные котлы, дистилляционные аппараты и т. д. [c.184]

    Физическая модель. Реактор полного вытеснения — это проточный аппарат, в котором каждое сечение потока движется строго параллельно самому себе без какого-либо конвективного или диффузионного смешения частиц с соседним сечением потока. По форме такое движение потока можно рассматривать как движение поршня в трубе . В реакторе такого типа концентрация в началь-ном се равна вхдаой и Р- [c.17]

    Необходимо отметить, что статистический метод расчета времени пребывания является в ряде случаев более универсальным, чем аналитический. Это особенно проявляется при расчете времени пребывания частиц в системах с большим числом реакций и сложными гидродинамическими условиями. Однако применение статистического метода к расчету реакторов в форме функции распределения времени пребывания вообш,е весьма ограничено и, как будет показано в дальнейшем, возможно лишь для изотермических процессов с реакциями нулевого или первого порядка. [c.27]

    На станке модели СТ00Б-1В (рис. 48) обжимают внутрь кромки обечаек, предназначенных для изготовления рубашек реакторов и другой аппаратуры. Профиль формующего ролика 3 этого станка иной, чем ролика станка модели СТ00Б-1Н формующий ролик размещен не на нижнем, а на верхнем валу 2, а кромка обечайки 1 обжимается отбортовочным роликом 4 снизу вверх. [c.95]

    Выше было отмечено, что при однократном крекинге керосиновых и. соляровых дестиллатов прямой гонки с глубиной разложения 60% образуется около 37% дебутанизированного автобензина и до 11% бутан-бутиленовой фракции. Более высокие выходы этих продуктов могут быть получены без усиленного газо- и коксообра-зованпя путем осуществления глубоких форм крекинга, проводимых с возвратом в реактор определенных количеств каталитического газойля. Проводимый в реакторах непрерывного действия процесс крекинга исходного сырья в смеси с каталитическим газойлем носит наименование крекинга с рециркуляцией. [c.75]

    В заводской практике сырье крекируют до разной глубины превращения. За показатель глубины каталитического крекинга принимают сувлмарный выход бензина, газа, кокса, выраженный в весовых или объемных процентах. При однократном крекинге, т. е. при однократном пропуске сырья через реактор, глубину превращения ограничивают обычно 55%. Глубокие формы кре  [c.7]

    На установках с однократным подъемом катализатора регенератор конструктивно объединяют с реактором и бункером. Схема одного из таких комбинированных вертикальных аппаратов изображена выше на рис. 46. Общая высота этого колонного ахшарата, состоящего из нескольких секций или сосудов ( стаканов ) цилиндрической формы разного назначения, равна приблизительно 98 м. [c.132]


Смотреть страницы где упоминается термин Реакторы форма: [c.101]    [c.181]    [c.161]    [c.241]    [c.248]    [c.292]    [c.294]    [c.82]    [c.127]    [c.8]    [c.109]   
Процессы в кипящем слое (1958) -- [ c.152 ]




ПОИСК





Смотрите так же термины и статьи:

К а и м Г. А. Влияние горизонтальной формы реактора на время пребывания частиц в кипящем слое

Формы математических моделей реакторов



© 2025 chem21.info Реклама на сайте