Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор сопротивление слоя

    Из приведенных выражений следует, что перепад давления в каждой полусекции, соответствующий допустимому расходу дымовых газов, зависит от газодинамических свойств катализатора и размеров секций. Газодинамические же свойства катализатора (сопротивление слоя проходу воздуха и скорость воздуха, при которой слой разрыхляется) зависят от фракционного состава катализатора. [c.65]


    На рис. 10.3 показан конвертор оксида данный газ углерода радиального типа. Он представляет собой вертикальный цилиндрический аппарат, заполненный катализатором. Парогазовая смесь подается сверху вниз по центральной трубе и через отверстия по всей ее высоте поступает на катализатор. Реакционный газ выходит из аппарата через кольцевой зазор вдоль наружных стенок. При радиальном потоке газа через катализатор сопротивление слоя катализатора меньше, чем при движении газа сверху вниз. Для предупреждения прохождения газа сверху вниз в верхней части аппарата расположен слой катализатора, выполняющий роль затвора. К конвертору применима модель реактора вытеснения, а по температурному режиму—адиабатического. [c.199]

    При аксиальном вводе сырья в реактор выбор диаметра аппарата и высоты слоя катализатора определяется гидравлическим сопротивлением слоя катализатора и допустимым значением условной скорости подачи сырья на свободное сечение аппарата, при которой начинается шевеление катализатора. [c.79]

    Большое внимание на качество катализатора оказывает способ его получения. Поскольку каталитическая реакция протекает на поверхности, целесообразно получить катализатор с максимально развитой поверхностью с большим количеством пор. Для разных реакций оптимальными могут быть узкие или, наоборот, более широкие поры, а также их комбинации. Не менее важны форма и размер зерен катализатора — от этого зависят удельная производительность, гидравлическое сопротивление слоя катализатора и конструкция реакционных аппаратов (со стационарным, движущимся или псевдоожиженным слоем катализатора). Кроме того, сама активность единицы поверхности катализатора зависит не только от его химического состава, но и от способа его приготовления. [c.84]

    В правильно спроектированных регенераторах слои катализатора оказывают небольшое сопротивление газовому потоку. Напор, создаваемый воздуходувками, используется как для преодоления сопротивлений слоев катализатора в регенераторе, так и сопротивлений подводящих воздухопроводов, задвижек и воздухораспределительных и газосборных устройств. Скорости газов должны быть такими, чтобы из регенератора не уносились частицы катализатора. [c.87]

    Несмотря на турбулентность кипящего слоя, при неравномерном распределении входящего в него потока состав газа в разных точках неодинаков. Например, концентрация кислорода в газе, выходящем из кипящего слоя регенератора, может быть выше, чем в циркулирующем газе. Отдельные струи газа имеют стремление сливаться, отделяться от твердых частиц и в виде крупных пузырей прорываться через слой. Это приводит к неустойчиво.му гидравлическому режиму, к выбросу катализатора из слоя. При недостаточном гидравлическом сопротивлении решетки и неравномерном распределении потока катализатора часть последнего может просыпаться через отверстия решетки. Такие явления снижают производительность регенератора и усиливают износ футеровки и решетки [225]. [c.144]


    При выборе высоты рабочей зоны учитывают, что с увеличением Яр растет как нагрузка на нижние слои катализатора, так и гидравлическое сопротивление слоя катализатора. Принято считать, что высота Нр представляет собой расстояние от середины разделительной зоны до обреза вертикальных трубок, по которым катализатор поступает в крекинг-зону. [c.248]

    Рабочее давление в аппарате определяют с учетом сопротивления слоя катализатора потоку паров сырья и газов в реакторе оно равно 0,07 МПа, в регенераторе 0,05 МПа. [c.217]

    Заполнив бункер высушенным катализатором, открывают задвижку под бункером и ссыпают катализатор в прокалочную колонну. Объем бункера соответствует полезному объему прокалочной колонны, т. е. одной загрузке. Заполнив колонну катализатором, разжигают топку под давлением (на жидком топливе), направляя дымовые газы в атмосферу. Затем, отрегулировав горение в топке, дымовые газы вводят в кожух прокалочной колонны. Прогрев кожух и удостоверившись в нормальном горении топлива, направляют дымовые газы в низ прокалочной колонны в минимальном количестве, необходимом лишь для преодоления сопротивления слоя катализатора. Затем начинают медленный подъем температуры дымовых газов на выходе из топки и разогрев катализатора. Разогрев системы продолжают примерно 10—12 ч за это время вводят такое количество дымовых газов, чтобы не было уноса катализатора сверху. Достижение температуры в низу колонны 600—650° С считается началом прокаливания катализатора. Продолжительность прокаливания при этой температуре 10 ч. [c.68]

    В дно его вставляется решетка, на которую кладется слой катализатора. Винтовую мешалку-насос в этом случае следует рассчитывать с учетом сопротивления слоя катализатора. В таком варианте аппарат используется как в статическом, так и в проточном режимах. [c.69]

    Скорость фильтрования Иф принимается по допускаемому гидравлическому сопротивлению слоя катализатора (табл. 5.5) в зависимости от порозности катализатора (е) и эквивалентного диаметра каналов слоя катализатора (1з. Конечная температура катализатора Тк рассчитывается по формуле [c.309]

    Размер частиц, применяемых в кипящем слое, обычно примерно на порядок ниже, чем в неподвижном слое, он почти не влияет на гидравлическое сопротивление потоку применение слишком мелких частиц ограничивается, однако, опасностью уноса катализатора из слоя. Обычно используют частицы сферической формы, как наиболее устойчивые к истиранию. Регулировку размера частиц производят в ходе получения гранул при коагуляции (см. раздел .2) или скоростью распыления при получении гранул на распылительной сушилке. Сферическая форма гранул, очевидно, определяется самой технологией получения катализатора. [c.199]

    Проблемы поддержания необходимого давления в реакционном аппарате и создания в нем этого давления носят чисто конструктивный характер. Если эффективность процесса возрастает с увеличением давления, предел повышению рабочего давления в реакторе ставит лишь одновременное удорожание аппарата. Удачное конструктивное решение позволяет поднять допустимый предел давления и тем самым интенсифицировать промышленный процесс. Перепад давлений внутри реакционной зоны может быть вызван гидравлическим сопротивлением слоя катализатора. Отрицательный эффект последнего, однако, связан в основном не с созданием градиента давлений, а с увеличением энергетических затрат на движение потока. [c.262]

    Другое важное преимущество кипящего слоя связано с возможностью использовать мелкие частицы катализатора, не увеличивая гидравлического сопротивления слоя. Благодаря применению мелких частиц устраняется внутридиффузионное торможение. [c.269]

    Изменение объема, в ходе реакции. Изменение объема потока, а следовательно, и его скорости в ходе реакции, т. е. по длине слоя катализатора, может произойти из-за изменения температуры, давления, вследствие гидравлического сопротивления слоя и от изменения общего числа молей в ходе реакции. [c.289]

    Чтобы вся внутренняя поверхность катализатора была равнодоступна реагирующим молекулам, надо уменьшать размеры таблеток, но при этом быстро возрастает сопротивление слоя катализатора движению газовой смеси и возрастают энергетические затраты на продувку большой массы газа через слой катализатора. Для определения оптимальных размеров таблеток катализатора и основных параметров процессов в химическом реакторе надо знать зависимость скорости реакции от размеров таблеток, их пористости, активности катализатора, скорости движения газовой смеси и ряда других факторов. Особенно велико влияние размеров таблеток катализатора на скорость гетерогенно-каталитических процессов в жидкой фазе, так как коэффициенты диффузии в этой фазе примерно на четыре порядка меньше коэффициентов диффузии в газовой фазе. Если на катализаторе протекают параллельные или последовательные реакции, то размеры таблеток могут повлиять на селективность процесса. [c.648]


    Реакторы с неподвижным слоем имеют некоторые недостатки. К ним. можно отнести такие как 1) трудность осуществления оптимального или близкого к нему температурного профиля по высоте слоя катализатора 2) трудности осуществления равномерного распределения подачи газа на слой катализатора 3) увеличение гидравлического сопротивления слоя с уменьшением размеров зерен катализатора, для того чтобы достичь увеличения поверхности контакта 4) необходимость смены катализатора. [c.127]

    Для достижения высокой активности первостепенное значение имеют два фактора общая внутренняя поверхность катализатора и внешняя поверхность экструдата. Последний фактор указывает, что реакция протекает в диффузионной области. Чем меньше размер экструдата, тем выше его активность. Но при этом растет гидравлическое сопротивление слоя катализатора, а на повышение давления газа для преодоления этого сопротивления требуются дополнительные затраты. Поэтому нужно учитывать влияние размера и формы экструдата, а также найти компромисс между величинами внутренней и внешней поверхности. Внутренняя поверхность в основном регулируется за счет изменения количества добавляемого оксида кремния. Влияние количества оксида кремния на удельную поверхность катализаторов видно из табл. 1. Хотя общая поверхность катализатора постоянно растет с увеличением содержания 5102, поверхность металлического железа, измеренная по хемосорбции СО после восстановления катализатора, уменьшается, начиная с определенного содержания 5102. [c.172]

    Трубчатые реакторы. Стабильность процесса в трубчатом реакторе определяется в основном величиной внутреннего диаметра трубки (ВДТ), При увеличении ВДТ конструкция реактора становится проще и возможно увеличение его мощности, но при этом ухудшается стабильность аппарата, выражающаяся, например, в увеличении параметрической чувствительности и величины динамического заброса [37, 38]. Решающими факторами при выборе максимального ВДТ для экзотермических процессов являются параметрическая чувствительность, динамические характеристики, допустимое гидравлическое сопротивление слоя катализатора, избирательность процесса п точность стабилизации входных параметров, которые определяются из анализа стационарных и нестационарных процессов в трубках разного диаметра. Для процессов эндотермических и протекающих вблизи равновесия определяющими параметрами являются, как правило, гидравлическое сопротивление и мощность аппарата. Максимальные значения ВДТ для процессов окисления метанола в формальдегид — 25 мм, окислительного дегидрирования н-бутенов — 21 мм, синтеза винилхлорида при концентрированном ацетилене — 55 мм и разбавленном — 80 мм [38], дегидратации <к-окси- [c.14]

    Интерес к фигурным гранулам катализатора объясняется увеличением поверхности контакта зерна по сравнению с традиционной цилиндрической формой гранулы при одновременном снижении гидравлического сопротивления слоя. [c.262]

    Полученные результаты свидетельствуют о том, что прп фиксированных геометрических размерах аппарата профиль радиальной скорости по длине реактора становится более однородным во всех трех областях течения по мере увеличения гидравлического сопротивления слоя катализатора. Изменяя в расчете геометрические размеры аппарата п сопротивление слоя катализатора, можно определить оптимальные условия для проведения данного технологического процесса. [c.80]

    В расчетах варьировались линейная скорость газового потока (ii), длительность цикла (i ), общее время контакта (т ), соотношение объемов катализатора и инертного материала, размеры и форма частиц катализатора и инерта. Параметры подбирались таким образом, чтобы нри заданных величинах температуры на входе (обычно в пределах 20—120°С) и концентрации токсичного компонента, либо интервала ее изменения, в реакторе формировался устойчивый периодический режим со средней степенью превращения не пиже 99,5% и максимальной температурой не выше 700°С. Гидравлическое сопротивление слоя при этом не должно было превышать 3 кПа. [c.175]

    Полученные при математическом моделировании результать приведены в табл. 7.3. Выбор катализатора в виде больших колец позволил уменьшить максимальную температуру в зоне реакции при высоких начальных концентрациях токсичных веществ, а также значительно снизить гидравлическое сопротивление слоя катализатора. На рис. 7.5, а и б приведены примеры экспериментальных профилей температуры в промышленном реакторе. Как видно, максимальные значения температуры в зоне реакции значительно [c.177]

    Рассмотрим вопросы, связанные с определением гидравли-чёскогр сопротивления катализаторной коробки. Требуется рассчитать сопротивления следующи.ч участков центральной трубы, изолированной и неизолированной части внутренних трубок, наружны.х трубок и слоя катализатора. Сопротивление слоя катализатора находится по формуле Аэрова для остальных участков метод расчета — общеизвестный. Плотность газовой смеси на каждом участке берется при среднеинтегральной температуре. [c.61]

    Пыль и слишком мелкие частицы должны выводиться из системы, так как их накопление в циркулирующей массе увеличивает гидравлическое сопротивление слоев катализатора и сопря-жено с чрезмерным уносом катализаторной кроппш потоком продуктов крекинга в ректификационную колонну, а газами регенерации в дымоходы. [c.45]

    Минимальная протяженность пути, который воздух проходит в слое катализатора, составляет 75 см. В нижней секции, служащей главным образом для охлаждения катализатора, эта длина nyTvi больше, чем в расположенных выше [108]. Гидравлическое сопротивление слоя возрастает с увеличением его толщины и скорости движения воздуха. [c.124]

    Катализатор — один из важнейших элементов контактных аппаратов, которому уделяется больнюе внимание. Наряду с требованиями к химической активности к нему нред1>являют требования механического порядка механическая прочность и стойкость к истира иию, размеры зерен катализатора должны быть одинаковы, не должно быть мелочи. При засыпке катализатора в полочные аппараты тщательно следят, чтобы слон был ровный, при загрузке катализатора в трубчатых аппаратах проверяют, чтобы гидравлическое сопротивление слоя в каж рй трубке было одинаковым. Как нpaви J o, газ в аппаратах направляют сверху вниз, чтобы поток газа принимал слой катализатора. При противоположном направлении [c.214]

    Проблему устойчивости реакторов детально исследовал Баркелью в уравнениях материального и теплового баланса им были приняты следующие упрощения. Тепло- и массоперенос посредством диффузии в продольном направлении считались пренебрежимо малыми по сравнению с конвекцией. Термическое сопротивление слоя в радиальном направлении считалось малым по сравнению с термическим сопротивлением в пространстве между слоем и стенкой реактора. Было принято, что зависимость скорости реакции от концентрации есть функция концентрации только одного компонента. Не учитывалось также сопротивление тепло- и массо-обмену в пространстве между потоком и частицами катализатора. [c.293]

    Пористая структура и размеры зерна катализатора через, диффузионные явления, прежде всего влияют на активность и избирательность катализатора. Эти вопросы рассматривались в главе III. Однако структура катализатора влияет не только на эти свойства. Она определяет в значительной мере механическую прочность катализатора и тем влияет на егодолговечность. Скорость зауглероживания катализатора и скорость регенерации, также зависят от структуры пор катализатора. Форма и размер зерен определяют и - гидравлическое сопротивление слоя катализатора и следовательно энергетические затраты на транспорт потока. В отношении активности и селективности катализатора и сопротивления слоя можно в более или менее строгой форме применять теоретически обоснованные методы оптимизации структуры и формы, в отношении же остальных свойств, на которые влияют структура и форма, приходится применять названные выше методы эмпирической оптимизации или расчетного сравнения отдельных вариантов. [c.189]

    Интенсивность массопередачи к внешней поверхности зерен катализатора зависит от конструкции контактного аппарата. Ее можно повысить, увеличив линейную скорость потока. Однако одновременно возрастает гидравлическое сопротивление слоя. Скорость вну енней диффузии зависит только от структурь пористого каталнз тора н свойств реагирующей среды. Уменьшение размера зерен снижает отрицательные последствия внутридиффузионного торможеннй, позволяя полнее использовать реакционный объем. Однако при этом также повышается гидравлическое сопротивление слоя частиц. При переводе процесса в кипяпщй слой, где можно использовать мелкие частицы, не повышая гидравлического сопротивления слоя, возникают специфические затруднения с диффузией реагентов между различными частями потока газов. [c.263]

    В. приведенных выше расчетах реакторов не были учтены некоторые факторы, существенно усложняющие расчеты. Например, к ним относятся такие факторы, как изменение объема потока в связи с изменением температуры реакции и гидравлическим сопротивлением слоя катализатора или вследствие протекания химической реакции, возникновение радиальных градиентов температуры в слое катализатора и т. п. Далее, выражение скорости реакции формальными уравнениями с эффективными коэффициентами хорошо оправды- [c.288]

    Предотвращение прорыва газов из одного аппарата в другой, а также в систему траиспортирования катализатора, достигается прежде всего созданием затворов из самого катализатора. Для этого транспортные стояки выполняют в виде длинных вертикальных труб, гидравлическое сопротивление слоя катализатора в которых превышает перепад давления между аппаратами. Независимо от этого иа трубопроводе, связывающем регенератор с реактором, устанавливается азотный затвор, представляющий собой камеру, в которой создается давление азота, превышающее иа 266—399 кПа (20—30 мм рт. ст.) дав- [c.330]

    С практической точки зрения важны устойчивость таблеток катализатора к раздавливанию в неподвижном слое или устойчивость частиц катализатора к истиранию в кипящем слое. Появление мелкодисперсного порошка катализатора в реакторе может привести к нежелательному увеличению гидродинамического сопротивления слоя катализатора или к уносу катализатора из реактора. Механические свойства катализатора могут также ухудшаться под воздействием реагентов или циклов термообработки. Предел прочности таблетки на разрыв и отношенпе ее высоты к диаметру являются важными параметрами, которые следует оптимизировать. Длинная цилиндрическая таблетка менее прочна, чем короткая и широкая. Нужно помнить, что максимальная прочность достигается при минимальной пористости, но для катализа определенная пористость необходима. Между [c.31]

    Повышение каталитической активности катализатора путем использования энергосберегаюших катализаторов сложных геометрических форм позволит увеличить производительность реакторов дегидрирования. Увеличение внешнего диаметра фанул катализатора обеспечивает снижеште гидравлического сопротивления слоя за счет увеличения его порозности. [c.264]

    Гидродинамические неоднородности могут быть как внешними, так и внутренними. К внешним можно отнести возникающие в объемах реакторов отрывные течения и вихреобразования потоков из-за несовершенства конструкций внутренних устройств. Такпе неоднородности в слое могут быстро затухать [3—5], однако в ряде случаев генерируемые ими неравномерности химического превращения приводят к проникновению в глубь слоя неоднородностей температурных и концентрационных полей, что существенно снижает эффективность процесса [6—8]. Колебания газовой нагрузки в системе, рост гидравлического сопротивления слоя из-за отложений в нем пыли, механические вибрации реактора, приводящие к частичной ломке и истиранпю частиц катализатора, п другие воздействия способствуют неравномерной объемной усадке слоя с образованием каверн, пустот, свищей и т. п. [9, 10]. В последнее время опубликованы данные о неблагоприятном влиянии на протекание каталитических процессов частых пусков реакторов после их внеплановых остановок. Слой катализатора при этом испытывает периодические тедшератур-ные расширения—сжатия, которые приводят к неконтролируемому уплотнению слоя. [c.24]

    Зависимость размерной скорости распространения фронта м = ии от скорости фильтрации немоното нна и имеет отрицательный минимум, а 0ц > 0. При ао = максимальная температура и скорость распространения фронта полностью определяются всеми прочими параметрами и, в частности, параметром X. Но как видно из оценок (3.48) и (3.49), всегда можно подобрать такое значение Я, при котором фронт распространяется навстречу потоку газа. В то же время при конечном значении параметра ао скорость распространения меньше, чем при бесконечном, а значит, тем более она отрицательна. О структуре фронта реакции — его профиле — можно судить на основании выражений (3.42), показывающих, что в зоне прогрева (охлаждения) температурные профили имеют экспоненциальный характер, а также на основании оценок максимальной температуры и ширины зоны химической реакции. Хотя структура теплового фронта в зоне реакции существенно зависит от кинетической модели процесса, такие характеристики, как максимальная температура и ширина реакционной зоны, вполне достаточны для практических целей. В частности, анализ приведенных оценок позволяет сделать вывод о том, что для реакторов с неподвижным слоем катализатора при низких входных температурах и малых адиабатических разогревах реакционной смеси можно всегда подобрать такие условия ведения процесса, при которых в нестационарном режиме будет достигнута достаточно высокая максимальная температура, обеспечивающая большую скорость химического превращения, причем достигнута она будет на небольшом участке слоя катализатора [16]. Реальные ограничения на максимальную температуру связаны только с величиной допустимого гидравлического сопротивления слоя катализатора. [c.89]

    От выбора направления потока зависит выбор алгоритма расчета гидравлического сопротивления слоя катализатора и соответственно изменяется расчет общего сопротиаления, где не учитывается потеря давления в собирающем устройстве.  [c.127]

    Независимость АРсл от была бы весьма удобна в заводской практике при вынужденных повышениях т. Однако следует учитывать, что гидравлическое сопротивление решетки ДРреш. па которой находится катализатор, в случае кипящего слоя больше, чем для неподвижного и составляет, согласно формуле (1.36), около 30% сопротивления слоя. А ДРреш повышается с увеличением IV так же, как и АРсл по зависимости (IV.14). [c.103]


Смотреть страницы где упоминается термин Катализатор сопротивление слоя: [c.325]    [c.266]    [c.487]    [c.558]    [c.195]    [c.216]    [c.42]    [c.131]    [c.170]    [c.175]    [c.214]    [c.188]   
Оборудование производств Издание 2 (1974) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

слое катализатора



© 2024 chem21.info Реклама на сайте