Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклы, стереохимия конфигурация

    Преодолев прямое сопротивление и открытые нападки одних и затаенный скепсис других, новая теория в течение первых десяти лет существования продемонстрировала свою плодотворность в области оптически активных соединений, а затем была распространена на случаи так называемой геометрической изомерии, обусловленной как присутствием двойных углерод-углеродных связей (Вислиценус, 1887 г.), так, затем, и азот-углеродных связей (Вернер и Ганч, 1889 г.). Байер в 1885 г. расширил идейное содержание стереохимии, введя понятие о напряжении, вызываемом искажением валентных углов, и, исходя из этого совершенно правильного принципа, дал в основном неправильное объяснение природы алициклов. Впоследствии теория напряжения Байера неоднократно уточнялась, особенно в применении к средним и большим циклам, что привело еще в конце прошлого — начале нашего века к понятиям о возможности для одного и того же цикла нескольких конфигураций, незначительно отличающихся друг от друга энергетически и разделяемых между собою относительно небольшими потенциальными барьерами. [c.347]


    Преобладающая биохимическая роль глюкозы невольно заставляет задуматься над вопросом что это — простая случайность, необъяснимый каприз природы Глубокое изучение стереохимии углеводов позволило понять причины того, что именно глюкозе принадлежит ведущая роль. Дело в том, что молекулы гексоз имеют не плоские, а трехмерные шестичленные циклы подобно циклогексану, кольцо имеет форму кресла. При этом заместители могут занимать аксиальное положение или (более выгодное) экваториальное положение. Конфигурация асимметрических центров глюкозы такова, [c.302]

    Подробное изучение конформации колец составляет одну из важных сторон стереохимии циклов. Однако при появлении в циклах заместителей (боковых цепей) кроме проблемы конформации самого цикла перед исследователем встают и проблемы конфигурации заместителей. С рассмотрения этого последнего вопроса мы и начнем, чтобы в дальнейшем, излагая материал о конкретных циклических системах, иметь возможность говорить о них как о совокупности самого цикла и заместителей. [c.318]

    Способность к образованию комплексов с пятичленными циклами зависит от стереохимии исходного соединения. Так, оказалось, что у циклических гликолей подобные комплексы способны давать только цис-изомеры. Этот факт послужил основой для экспериментального определения конфигурации аномеров. Прибавление свежеприготовленного раствора а- )-глюкозы резко увеличивало электропроводность водного раствора борзой кислоты, после чего электропроводность постепенно падала, пока [c.34]

    НОЙ конфигурации была решена прежде всего благодаря использованию исходных и промежуточных веществ пикнического строения, жесткая геометрия которых обеспечивала надежный контроль стереохимии образования новых центров. Но не менее важным было применение реакции Байера— Виллигера как метода, позволявшего с уверенностью использовать эти преимущества работы с циклическими соединениями, поскольку заранее было известно, что окислительное раскрытие циклов в этих соединениях будет проходить с сохранением конфигурации. [c.262]

    Впервые яа основе анализа стереохимии каталитической изомеризации хиральных /--гидроксиэпоксидов (1-8) под действием щелочных агентов установлено, что в процессе реакции происходит обращение конфигурации -атома углерода оксиранового цикла, а конфигурации двух других аошшетрических атомов углерода не меняются. [c.136]

    Конечно, эти три механизма нелегко различить всем им соответствует кинетика второго порядка, и два из них осуществляются с сохранением конфигурации [5]. Несмотря на множество работ, посвященных этой проблеме, известно лишь несколько случаев, когда можно однозначно сказать, что действительно имеет место какой-то один из трех механизмов, а не другой. Ясно, что отличить механизм 8е2 (с тыла) от механизмов 5е2 (с фронта) или 5е1 можно с помощью изучения стереохимии, и таких исследований известно довольно много. Подавляющее большинство реакций электрофильного замещения второго порядка происходят с сохранением конфигурации или характеризуются другими указаниями на фронтальную атаку, т. е. на механизмы 8е2 (с фронта) или 5е1. Например, при обработке цис-формы соединения 1 меченым хлоридом ртути(П) продукт 2 на 100 % представляет собой 1 ис-изомер. Поскольку в обоих продуктах реакции содержание меченого атома ртути приблизительно одинаково, это означает, что должна разрываться связь между ртутью и циклом (а такл<е другая связь Нд—С) [6]. Еще одним указанием иа фронтальную атаку явля- [c.409]


    Стереохимия восстановления конденсированных циклогексе-нонов, в которых -углеродный атом находится в месте сочленения циклов (например стероидных ен-4-онов-З), почти всегда подчиняется стереоэлектронному контролю. Главным продуктом является более устойчивый из двух изомеров цис- или транс-), в котором введенный -водородный атом занимает аксиальное положение. В условиях установления равновесия между енолятом и кетоном (термодинамический контроль) получается продукт, имеющий стабильную конфигурацию при -углеродном атоме. Кинетическое протонирование промежуточного енолята дает менее стабильный эпимер, как это видно на примере замещенного декалона  [c.184]

    Только что описанные эксперименты были вьшолиены в первой серии измерений, и задача, таким образом, осталась нерешенной. Спустя некот орое время была проделана вгорая серия измерений с облучением протонов Н з н Н ь (на схеме 2 справа), которые полностью прояснили структуру. Прежде всего большие величины ЯЭО на Нд н Н3 при облучении Н4, свидетельствуют об их сходном положении, а поскольку Н5 уже связан с Н2ъ, можно утверждать, что гидроксильная группа находится за плоскостью рисунка. Конфигурация Сд была подтверждена взаимодействием Н и Н , также свидетельствующим о предложенной конфигурации цикла. Таким образом, установленная стереохимия соответствует формуле 7. Позже она была подтверждена обратной картиной взаимодействия протонов прн С2 с протоном Н, в изомерном веществе 8. [c.185]

    Стереохимия р-ции зависит от характера субстрата. Обычно образующийся радикал с неспаренным электроном у хирального атома С имеет плоскую или близкую к плоской конфигурацию, что приводит к рацемизащ1и. В цшслич. системах инверсия радикального центра затруднена, особенно в случае малых циклов, напр.  [c.160]

    По номенклатуре ИЮПАК полная нумерация в С. производится так, как показано в ф-ле II. Если один или более атомов С отсутствуют, нумерация оставшейся части сохраняется. В формулах С. связи атомов или групп, располагающихся за плоскостью кольцевой системы (а-конфигу-рация), изображают пунктирной линией, атомы и грушш, располагающиеся перед плоскостью (Р-конфигурация),-жирной линией связи с неопределенной конфигурацией обозначают волнистой линией. Назв. частично ненасьпценных С. производят от назв. насыщенных посредством окончания ен . В названиях С., содержащих внутри структуры трехчленное кольцо, вводится префикс цикло с цифровым указанием положения и стереохимией обозначения общее назв. таких С.-циклостероиды. [c.436]

    Две креслообразные конформации более устойчивы. В незамещенном или симметрично замещенном циклогексановом кольце, они соответствуют вполне идентичным конформациям, полученным при конверсии этого кольца, наоборот, в замещенном пиранозном цикле креслообразные конформации обычно достаточно четко различаются по запасу внутренней энергии следовательно, моносахарид обычно существует в одной из дву.х креслообразных форм. Эти две конформации (1 или С1) являются изомерами, получающимися при конверсии пиранозного цикла, в результате которой все аксиальные заместители становятся экватори-альнььми и наоборот. Отсюда достаточно ясно, что предпочтительность той или иной конформации (1 или I) определяется имеющимися в пиранозном кольце заместителями и их пространственным расположением, т. е. другими словами, строением и конфигурацией моносахарида. В то же время, выяснив конфор.мацию того или иного производного моносахарида, мы можем, наоборот, используя законы конформационного анализа, сделать заключение о его стереохимии. [c.51]

    Стереохимия восьмичленных циклов более сложна такой цикл обладает большей гибкостью, и поэтому различные конфигурации обнаруживаются и в полиморфных модификациях (например, кресло и ванна. М4Р4С18), и в близких ио составу солях (см. тетраметафосфаты, разд. 19.6.14), и даже в одном кристалле, как это наблюдается в случае [ (СНз) 2SiNH] 4. Нетрудно построить модели четырех форм восьмичленного цикла, образованного ато.мами с тетраэдрическими связями (эти атомы нумеруются последовательно по ходу цикла). [c.123]

    Если нужно обозначить относительную конфигурацию при несколь ких местах сочленения циклов, то используют префиксы цисоид и трансоид. Например, трициклический углеводород (75) называют 1 ис-7рансои(3-г ис-пергидроантраценом. Вопрос об относительной стереохимии семи конфигурационных изомеров дициклогексано-18-крауна-б рассматривается в разд. 4.4.5.2. [c.40]

    Для сопоставления абсолютных конфигураций других ротеноидов и ротенона использован метод дисперсии оптического вращения все природные ротеноиды показывают положительный эффект Коттона и имеют одинаковую абсолютную стереохимию по центрам 6а и 12а [103, 108]. Для установления цис-сочленения циклов В и С в природных ротеноидах использовали спектроскопию ПМР. В ротеноидах с цис-сочленением циклов В и С сигнал протона в положении 1 имеет химический сдвиг, отличающийся приблизительно на 1 млн- от химического сдвига соответствующего протона изомера с транс-сочленением, что обусловлено значительным дезэкранированием этого протона под воздействием карбонильной группы в последнем случае [109]. [c.206]


    В первом случае образуется система транс-декалииа, во втором — цис-декалина. Тип сочленения пиранозного цикла с л<-диоксановым определяется стереохимией гидроксильной группы при С4 если гидроксил при С4 имеет О-конфигурацию, то возникает транс-сочленение, если -конфигурацию, то 1 ис-сочленение. Это правило относится к О-ряду, для -ряда оно обращается, Бензилиденовые производные метилгликопиранозидов получили особенно широкое применение как важные исходные соединения в синтетической химии моносахаридов. [c.177]

    На первой стадии синтеза легко доступный метиловый эфир и-крезола (476) восстановлением по Берчу был превращен в диен 477. Озонирование последнего протекало как селективное окисление более нуклеофильной ме-токсизамещенной двойной связи. Восстановление озонида с хорошим выходом дало ключевой продукт синтеза, алкен 478. Z-Конфигурация двойной связи в этом соединении обеспечивала нужную стереохимию эпоксидного цикла в конечном продукте. Последующее тозилирование гидроксильной группы и гидрогенолиз тозилата при действии LiAlH4 с одновременным восстановлением карбометоксильной группы дали гомоаллильный спирт 479, который далее с помощью серий стереоселективных реакций удлинения цепи был превращен в целевой продукт 475. Таким образом, благодаря связке двух эффективных реакций, а именно восстановления по Берчу и селективного озонолиза, удалось использовать исходное ароматическое производное 476 в качестве синтетического эквивалента функционализованного ациклического Ст-синтона с фиксированной Z-геометрией двойной связи. [c.267]

    Стереохимия. В то время как ароматические соединения имеют плоскую структуру, частично и полностью гидрированные шестичленные циклы являются неплоскими. Молекулы пиперидина и морфолина имеют конфигурацию кресла, и атом водорода, связанный с атомом азота, является аксиальным [63]. Ди- и полизаме-щенные пиперидины и тетрагидропираны существуют в цис- и гранс-изомерных формах. Например, псевдотропин (783) и тропин отличаются друг от друга конфигурацией гидроксильной группы. Декагидроизохинолин встречается в виде транс- (784) и цис-то-меров (785), которые отличаются сочленением колец (ср. декалины).  [c.112]

    КОНФИГУРАЦИЯ МОЛЕКУЛ в стереохимии, пространственное расположение заместителей вокруг стерич. центров (двойной связи, цикла или элемента хиральности). Различные К, м, связаны с сущестповапием геом, и 01ггич, изоме- [c.273]

    При использовании данного метода, во-первых, нужно иметь в виду возможность конформационного превращения типа I И. Это особенно относится к моноциклическим системам и с этим необходимо считаться нри интерпретации результатов. Поскольку положение равновесия I II зависит от энергетического барьера, определяемого всеми другими заместителями в молекуле, ход реакции иногда может указать на предпочтительную конформацию цикла. Во-вторых, не менее важно, что эта реакция лишь относительно стереоспецифична. Следует иметь в виду, что транс-элиминировапие протекает только быстрее, чем г ыс-элиминирова-ние, и именно различие в этих скоростях позволяет делать выводы о конфигурации. Поэтому самый факт протекания реакции отщепления совсем не исключает возможности г мс-расположения участвующих в реакции групп. Для того чтобы установить пространственный ход реакции, нужно, чтобы дегидратация в стандартных условиях протекала с определенной легкостью. Необходимо, или по крайней мере желательно, всегда сравнивать поведение обоих эпимерных спиртов, если они доступны, ибо только в этом случае можно исключить всякие сомнения в их стереохимии. В ограниченном ряде случаев может быть достаточным изучить отщепление лишь на одном примере, если при этом получается однозначный положительный или отрицательный результат. [c.532]

    Диолы и полиолы легко образуют соединени я и комплексы различных структурных типов со средним размером цикла, например при взаимодействии с катионами металлов (см. разд. 4.1.2.2), оксианионами, карбонильными соединениями и различными би- и полифункциональными реагентами. Помимо их исключительно интересных свойств и стереохимии такие циклические производные находят различное применение, включая разделение и идентификацию полиолов (см. с. 122), установление конфигурации диолов (см. с. 122), защиту гидроксильных групп в диолах (см. с. 136), дифференциальную функциопализацию диолов (см. с. 141) и де-гидроксилирование диолов (см. с. 155). [c.135]

    Следует предостеречь читателя от прямого переноса закономерностей пространственной ориентации заместителей в циклоалканах на те же закономерности в алканах. Дело в том, что стандартная конформация алканов в принципе отлична от конформации средних колец, напоминающей скорее заслоненные, чем трансоидпые (стандартные) конформации алканов. Поэтому раскрытие цикла углеводородов (разрыв С—С-связи вдали от хиральных центров), имеющих вицинальные заместители в 1 ис-положении, приведет к образованию трагес-диастереомерных алканов (в стандартной конформации) и наоборот. В то же время аналогичное раскрытие цикла в углеводородах, имеющих заместители, разделенные одной —СНа-грунпой, приведет к сохранению их пространственного расположения. Само собой разумеется, что конфигурации хиральных центров во всех случаях остаются неизменными (если, конечно, при этом не затрагиваются связи, непосредственно примыкающие к асимметрическим атомам углерода). Некоторые примеры таких превращений послужили для экспериментального установления стереохимии диастереомерных алканов (см. гл. IV). [c.38]

    Не без влияния Бишофа произошла в дальнейшем разработка стереохимии циклогексана. В 1890 г. Заксе выступил с пересмотром теории напряжения Байера, указав на возможность двух ненапряженных нормальных конфигураций циклогексана, получивших впоследствии наименование ванны и креола . Заксе также указал, на то, что для перехода одной формы в другую необходима энергия извне. Изомерию циклогексана и его производных, вызываемую этой причиной, Заксе, вслед за Бишсфом, назвал динамической. Мы подразумеваем под этим все такие изомеры, превращение которых друг в друга возможно без уничтожения связей [70, с. 240]. Дальнейшее развитие этой идеи и распространение ее на большие циклы, а также на соединения с несколькими циклами принадлежит Мору (1918). Для теории строения этих циклов работа Мора имела такое же значение, как исследования Заксе для стереохимии циклогексана. Мор (1922) сделал успешное предсказание существования двух, цис- и транс-форм декалина, впервые обратил внимание на существование напряжения, обусловленного трансаннулярным отталкиванием атомов и групп в средних циклах (от циклооктана до циклододекана). [c.52]

    Хотя идея о существовании переходного состояния была высказана еще Кекуле в 1858 г. [89, с. 17], теория переходного состояния стала разрабатываться примерно с середины 1930-х годов (см. гл. УНТ, 2). В 30-е же годы появились и попытки исследования стереохимии этих состояний. Так, Ингольд и Хьюз на основе изучения бимолекулярных реакций нуклеофильного замещения при насыщенном атоме углерода пришли к выводу, что в этом случае образуется переходный комплекс, в котором три заместителя, не участвующие в реакции, лежат в одной плоскости, а уходящий и вступающий заместители находятся по разные стороны от этой плоскости. По аналогии Хьюз и Ингольд распространили это представление и на бимолекулярные реакции электрофильного замещения. Однако в 50-х годах Реутов и сотр. показали на примере элекТро-филъного замещения с участием ртутноорганических соединений, что конфигурация переходного комплекса в этом случае сохраняется, и что предположительно комплекс имеет вид четырехчленного цикла. [c.177]

    В 50-х годах XX в. стереохимия углеводов получила дальнейшее развитие (Ривз) стали изучаться их конформации (сгр. 64). Представления о пиранозах как о циклах, расположенных в одной плоскости, естественно, не могли удовлетворить ученых хотя бы потому, что при плоскостном расположении цикла валентные углы должны сильно отличаться от нормальных (109°28 ), и такие кольца должны быть очень напряженными. Вследствие наличия кислородного атома и ряда асимметрических углеродных атомов пиранозное кольцо может существовать в виде восьми более стойких конфигураций. Часть этих конформаций имеет форму лодки , часть — форму кресла (рис. 47, а и б). Более стойкой, а потому и более часто встречающейся является форма кресла . На рис. 47, в приведены конформационные формулы а- и Р-глюкозы, отражающие конформационную форму, в которой она обычно находится в свободном состоянии и в ряде своих производных. [c.225]


Смотреть страницы где упоминается термин Циклы, стереохимия конфигурация: [c.299]    [c.261]    [c.267]    [c.104]    [c.716]    [c.348]    [c.617]    [c.514]    [c.261]    [c.37]    [c.115]    [c.132]    [c.205]    [c.223]    [c.281]    [c.20]    [c.584]    [c.676]    [c.104]    [c.341]    [c.139]    [c.204]    [c.348]    [c.63]   
Основы стереохимии (1964) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Стереохимия



© 2025 chem21.info Реклама на сайте