Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защита от коррозии гальваническое покрытие

    Нанесенные на металлы электролизом покрытия получаются ровными по толщине, прочными, служат долго, и, кроме того, таким способом можно покрывать изделия любой формы. Эту отрасль прикладной электрохимии называют гальваностегией. Кроме защиты от коррозии, гальванические покрытия иногда придают красивый декоративный вид предметам. [c.153]

    С помощью приведенных соотношений решают электрохимические задачи, имеющие большое практическое значение, в таких разделах, как химические источники электрической энергии, защита металлов от электрохимической коррозии, гальванические покрытия, электрохимическая очистка воды, электрохимический синтез, электрохимическая обработка металлов. [c.156]


    Предварительные нормы защиты от коррозии. Гальванические покрытия, условные обозначения, толщина слоев, общие правила (январь 1955) [c.659]

    Особо важное значение придается антикоррозионным пластмассовым покрытиям для защиты черных металлов. Подсчитано, что около одной пятой мировой добычи черных металлов гибнет от коррозии. А существующие лакокрасочные и гальванические покрытия не являются высоконадежной защитой от коррозии. Гальванические покрытия нестойки к кислотам, щелочам, их нанесение трудоемко и связано с использованием дефицитных материалов (цветных металлов и химикатов). Лакокрасочные покрытия неустойчивы к удару, износу их пленки при разовом покрытии слишком тонки 50—80 мк, в то время как для обеспечения надежной защиты металлов от атмосферных воздействий они должны быть толщиной 150—250 мк, а от воздействия жидких агрессивных сред 300 мк. [c.255]

    ЗАЩИТА ВЫСОКОПРОЧНЫХ СТАЛЕЙ ОТ КОРРОЗИИ ГАЛЬВАНИЧЕСКИМИ ПОКРЫТИЯМИ [c.157]

    Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы. [c.210]

    В практике электролиз наиболее широко используют для получения гальванических покрытий. Их наносят для защиты изделий от коррозии (цинкование, кадмирование), для придания красивого внешнего вида (никелирование), для увеличения твердости поверхностного слоя (хромирование), для создания поверхности с большей электропроводностью (серебрение, золочение) и т. п. [c.143]


    Наиболее распространена защита алюминия и его сплавов от коррозии электрохимическим оксидированием, при котором окисление достигается действием электрического тока (см. работу 5 этого раздела). Алюминиевые изделия помещают в электролит в качестве анода, поэтому метод обработки носит название — анодное окисление, или анодирование. При анодировании на алюминии и его сплавах получают пленки толщиной 5—20 мк, а в специальных случаях до 200—300 мк. Анодирование применяется не только для защиты от коррозии и улучшения адгезии (сцепления) с лакокрасочными покрытиями, но и для декоративной отделки поверхности металла, получения на ней фотоизображений, повышения стойкости против истирания, получения поверхностного электро- и теплоизоляционного слоя и слоя высокой твердости. Твердость анодной окисной пленки на чистом алюминии 1500 кг/мм , т. е. выше, чем твердость закаленной инструментальной стали. С помощью анодных пленок алюминия изготовляют алюминиевые выпрямители и конденсаторы. В последнее время анодная окисная пленка используется как подслой для лучшего сцепления алюминия с гальваническими покрытиями (хромом, никелем, серебром и др.). [c.146]

    Гальванические покрытия широко применяются во многих областях техники и имеют различные назначения а) защита от коррозии цинкование, кадмирование, лужение, оловянирование и др. б) защита от коррозии и придание красивого внешнего вида (защитно-декоративные) никелирование, хромирование, серебрение и золочение в) повышение электропроводности меднение, серебрение, золочение г) повышение твердости и износостойкости хромирование, родирование, палладирование д) получение магнитных пленок осаждение сплавов никель — кобальт и железо — никель е) улучшение отражательной способности поверхности серебрение, родирование, палладирование, хромирование ж) улучшение способности к пайке лужение, осаждение сплава олово — свинец з) уменьшение коэффициента трения свинцевание, хромирование, осаждение сплавов олово—свинец, индий — свинец и др. [c.374]

    Электрохимия имеет большое практическое значение в связи с развитием промышленных электрохимических методов получения металлов, щелочей, солей, электросинтеза ценных органических веществ, применением электролиза для нанесения гальванических покрытий для защиты металлов от коррозии и др. Электрохимические методы исследования и анализа приобретают все большее значение на практике в качестве быстрых и точных методов анализа и производственного контроля. [c.8]

    В настоящее время предметы домашнего обихода и лабораторные приборы (шпатели, щипцы, тигли и пр.) часто делают из чистого никеля. Но главным образом чистый никель используется для гальванического покрытия (никелирования) железных изделий для защиты от коррозии и в декоративных целях. Тонкораздробленный никель широко применяется как катализатор при гидрогенизации жиров. [c.387]

    Медные покрытия, как правило, не применяются в качестве самостоятельного гальванического покрытия ни для декоративных целей, ни для защиты стальных изделий от коррозии. Это объясняется тем, что медь в атмосферных условиях окисляется, покрываясь с поверхности основными карбонатами (результат взаимодействия с влагой и углекислым газом воздуха). По своим электрохимическим свойствам медь по отношению к железу является катодным покрытием, т. е. лишь механически предохраняет стальные изделия от коррозии. На поврежденном участке покрытия образуется гальваническая пара железо—медь, где железо будет являться анодом, а медь — катодом. Следовательно, медь будет ускорять коррозию железа. Медные пок рытия используют в качестве подслоя при никелировании, хромировании и некоторых других процессах. Медь легко полируется и дает прочное сцепление с другими металлами. В качестве самостоятельного покрытия медь применяется при углеродистой цементации железа, где медным покрытием защищаются отдельные участки изделий, не подлежащие [c.176]

    Гальванические покрытия наносят для защиты металлов от коррозии, а также в декоративных и специальных целях (увеличение отражательной способности волноводов и рефлекторов, уменьшение сопротивления электрических контактов и т. д.). Покрытие осуществляют электролизом растворов как с растворимым анодом (никелирование, кадмирование, цинкование, лужение, серебрение и др.), так и с нерастворимым (хромирование, золочение). Покрываемое изделие всегда является катодом, [c.214]

    Применение гальванических покрытий с лакокрасочными в сочетании с различными смазками удлиняют срок службы металлических изделий во влажных субтропиках и рекомендуются для защиты от коррозии всех узлов и агрегатов. [c.103]


    Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой. Покрывающий слой наносят различными методами кратковременным погружением в ванну с расплавленным металлом (горячее покрытие), электроосаждением из водных растворов электролитов (гальваническое покрытие), напылением (металлизация), обработкой порошками при повышенной температуре в специальном барабане (диффузионное покрытие), с помощью [c.143]

    Предназначен для защиты углеродистых, легированных, электротехнических сталей при травлении их с целью удаления окалины, при травлении изделий перед нанесением гальванических покрытий для временной защиты от коррозии стальных емкостей в разбавленных растворах азотной кислоты. [c.155]

    Для защиты металлов от коррозии используют покрытия, которые наносят различными способами. Гальванический способ нанесения защитной пленки заключается в выделении под действием электрического тока металлов из их растворов на покрываемой детали, которая служит катодом (никелирование, хромирование и т. д.). Химический способ заключается в образовании пленки в результате реакций, происходящих на поверхности металла под действием химических реагентов (оксидирование, фосфатирование). [c.73]

    Титановые гальванические покрытия применяют для защиты от коррозии различных металлов и сплавов, особенно при эксплуатации в морских условиях. Выделение титана электролизом из водных растворов затруднено из-за большой склонности его к пассивированию и высокого отрицательного по- [c.82]

    Одним из способов защиты от коррозии является нанесение поверхностных гальванических покрытий. Электроосаждение имеет ряд преимуществ перед другими методами защиты, т.к. оно позволяет  [c.266]

    Защитные покрытия — тонкие пленки, искусственно создаваемые на поверхности металла для защиты от коррозии. Металлические покрытия наносятся либо в гальванических ваннах при пропускании постоянного тока, либо в печах при высокой температуре неметаллические лакокрасочные покрытия содержат раствор полимера в органическом растворителе с различными присадками. [c.7]

    Тонкое гальваническое покрытие титана платиной может служить своеобразным методом анодной защиты титана в морской воде [179]. Известно, что в морской воде при поляризации титана большими токами наступает пробой пассивной пленки хлор-ионами и происходит питтинговая коррозия. Из рис. 117 видно, что при поляризации потенциал платинированного титана до значительной плотности анодного тока не смещается в положительную сторону, следовательно, металл остается в устойчивом состоянии. Таким образом, в условиях применения титана в морской воде или других нейтральных хлоридных растворах при интенсивной анодной поляризации платинирование поверхности будет хорошей защитой. Подобное платинирование поверхности титана используют для изготовления нерастворяющихся устойчивых титановых анодов при катодной защите в морской воде или растворах хлоридов. [c.168]

    Испытания на С-образных образцах проводят почти во всех коррозионных средах. Образец располагают таким образом, чтобы в контакте с коррозионной средой находилась только максимально деформированная поверхность. Для защиты от гальванической и щелевой коррозии применяют изолирующие втулки и покрытия. [c.68]

    Прилол<ение к предварительным нормам по защите от коррозии. Гальванические покрытия на стали общие указания по применению в качестве защиты от атмосферной коррозии в средней и западной Европе (январь 1955) [c.659]

    Гальваническое осаждение зачастую более экономично, чем другие способы нанесения металлических покрытий. Этот способ позволяет получать относительно равномерный слой с заданным химическим составом, высокими механическими и коррозионнозащитными свойствами при небольших толщинах покрытия. Все гальванические покрытия по их назначению можно разделить на следующие основные группы покрытия для повышения износостойкости, для улучшения прирабатываемости и повышения противозадирных свойств, уменьшения склонности к схватыванию, для повышения стойкости против коррозии, для защиты отдельных поверхностей деталей при их химико-термической обработке. [c.81]

    Марганец входит в состав многих сплавов. Сплав манганин состоит из марганца, меди и никеля. Манганиновая проволока с изхменением температуры почти не меняет электрическую проводимость, что используется при изготовлении катушек сопротивления. Сплавы меди с марганцем применяют для изготовления тур-б шпых лопаток, а марганцовые бронзы — при производстве пропеллеров. Марганец содержат многие алюминиевые п магниевые сплавы. Гальванические покрытия марганцем применяются для защиты изделий от коррозии. [c.207]

    В настоящее время применяют бронзовые покрытия двух составов, содержащие 10—20% и 40—45%) 5п. Осаждение бронзовых покрытий ведут преимущественно из цианистых электролитов. Гальванические бронзовые покрытия, содержащие 10% 5п, применяют для имитации золота, а 15—20% 5п исключительно с целью защиты от коррозии. Так, изделия, покрытые этим сплавом и работающие в пресной воде при высоких температурах, сохраняются дольше, чем оцинкованные. Гальваническое покрытие белой бронзой, содержащей 40—45% 5п, применяют для защитно-декоративных целей. Высокооловянистая бронза имеет белый цвет и по внешнему виду напоминает серебро, но в отличие от последнего, обладает высокой твердостью. Твердость белой бронзы в 5—6 раз выше твердости меди. Белая бронза прекрасно полируется и хорошо отражает свет. Коэффициент отражения ее составляет 65— 66%, т. е. выше, чем у хрома. Сплав хорошо переносит атмосферное воздействие, устойчив по отношению к сульфидам (в отличие от серебра), удовлетворительно противостоит действию органических кислот, входящих в состав пищевых продуктов. [c.210]

    Важнейшая область прикладной электрохимии — гальванотехника. Этим названием объединяются два направления гальваностегия — получение гальванических покрытий иа металлах и гальванопластика — электрохимическое получение точных металлических копий с рельефных поверхностей (Якоби). Сейчас гальваиоиластика находит применение для нанесения металлических рисунков на полупроводники и непроводящие материалы (например, в производстве печатных радиосхем для миниатюрных радиоирпемииков). Гальванические покрытия наносят для защиты металлов от коррозии, а также в декоративных и специальных целях (увеличение отрам<а-тельной способности волноводов и рефлекторов, уменьшение сопротивления электрических контактов и т. д.). Покрытие осуществляют электролизом растворов как с растворимым анодом (никелирование, кадмирование, цинкование, лужение, серебрение и др.), так и с нерастворимым (хромирование, золочение). Покрываемое изделие всегда является катодо . [c.264]

    Широкое применение, особенно в машиностроении, для защиты от атмосферной коррозии находят гальванические покрытия, которые получаются катодным осаждением заш,ищающего металла или сплава из водных растворов, содержащих катионы металла — покрытия. Металлические покрытия получают также химическими методами путем восстановления ионов металла е помощью веществ-восстановителей, находящихся в растворе. [c.49]

    Свинец и его сплавы. Свинец обладает очень высокой сопротивляемостью действию коррозии в кислотной среде, и гальванические покрытия, получаемые из растворов кислых фторобо-ратов, фторосиликатов или сульфатов, используются для защиты черных металлов или сплавов на медной основе. [c.96]

    Цинк. Хотя ЦИНК используется в основном в виде гальванического покрытия для защиты стали от коррозии в морской атмосфере, интересно исследовать и коррозионное поведение самого цинка. В течение первых лет экспозиции в морской атмосфере коррозия цинка постепенно замедляется, затем происходит с определенной стационарной скоростью. Например, посла 10- и 20-летней экспозиции в Ла-Джолле (Калифорния) стационарная скорость атмосферной коррозии прокатанных образцов составила 1,75 мкм/год [122]. При испытаниях в Ки-Уэсте (Флорида) установившаяся скорость коррозии была еще меньше — 0,56 мкм/год. В табл. 65 представлены результаты коррозионных испытаний, проведенных в четырех разных местах. В слабо агрессивной сельской атмосфере Стейт-Колледжа (Пенсильвания) скорость коррозии цинка оказалась вдвое выше, чем в Ки-Уэсте, но в полтора раза меньше, чем в Ла-Джолле. [c.165]

    Хотя ЦИНК корродирует в морской воде обычно с меньшей средней скоростью, чем железо, он не применяется в качестве конструкционного металла в условиях погружения как из-за плохих физических свойств, так и из-за склонности к местной коррозии [46]. Основное применение цинка — протекторы для защиты погружаемых конструкций и защитные гальванические покрытия на стали. Трубопроводы нз оцинкованной стали используются на кораблях в пожарных системах перекачки морско й воды. Высокая коррозионная стойкость таких труб связана, несомненно, с ограниченной концентрацией кислорода в заполняющей их стоячей воде. [c.167]

    На детали из меди и ее сплавоз гальванические покрытия наносят для обеспечения пайки обычными методами (Ай, 5п, К- ), уменьшения переходного сопротивления электроконтактов (.Ag,. Аи), сохранения постоянства электрических параме1ров (Рй, КЬ), устранения контактной коррозии (2п, Сс)), повышения износостойкости (Сг, химический N1), защиты от коррозии (Сг. N1, черный Сг, химический N1) и т. д. [c.17]

    Для защиты от атмосферной коррозии и коррозии в некоторых агрессивных средах используют лакокрасочные покрытия. Широко применяют гальванические покрытия, химические осаждения защитной пленки из растворов и расплавов, напыление покрытий различными способами, гуммирование поверхности резиной. В последнее время все больщее применение получают двухслойные стали с плакирующим защитным слоем из высоколегированной стали, а также стали с защитным полимерным покрытием. Для снижения электрохимической коррозии используют катодную или анодную защиту конструкции. [c.84]

    А. М. Л а п и д е с, Осаждение гальванических покрытий в ультразвуковом поле, Защита металлов от коррозии, износостойкие, антифрикционные и декоративные покрытия, изд. ЦИТЭИН ГНТК, вып. 16, 1960. [c.132]

    Для защиты от коррозии оборудования, контактирующего с речной водой, широко применяются различные металлические покрытия. Выбор металла, используемого для покрытия, и метод его нанесения зависят от вида защищаемого оборудования и характера водной среды. Цинковые гальванические покрытия (наносимые из цианистых, сернокислых и других электролитов) используются для защиты от коррозии листовой стали, из которой изготавливают емкости для неумягченной воды. Покрытие имеет хорошую стойкость к коррозии практически в любой нейтральной природной воде, в том числе жесткой, содержащей гидрокарбонат кальция, при низких и повышенных температурах. [c.99]

    К ногативныгл явлениям, сопрсвол ающим коррозию металлов к сплавов с водородной деполяризацией, их катодную защиту и нанесение гальванических покрытий, относится водородное охрупчивание, приводящее к существенному снижению прочностных свойств материала. Если для кристаллических металлов эта проблема изучена достаточно полно, то инфоршция о сменности к водородной хрупкости аморфных сплавов и, в частности, аморфных сплавов (АС) на основе железа носит в основном фрагментарный характер. В этой связи в настоящей работе предпринято исследование механического поведения АС евЗ Г наводороживания в сернокислых растворах при различных режимах катодной поляризации  [c.82]


Смотреть страницы где упоминается термин Защита от коррозии гальваническое покрытие: [c.99]    [c.245]    [c.222]    [c.99]    [c.251]    [c.81]    [c.37]    [c.94]    [c.135]    [c.14]    [c.130]    [c.636]   
Ремонт и монтаж оборудования химических и нефтеперерабатывающих заводов (1971) -- [ c.102 , c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Защита от коррозии

Защита покрытия от коррозии

Коррозия гальваническая

гальванические



© 2024 chem21.info Реклама на сайте