Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий, определение в индии, кадмии

    Зависимость, существующая между максимальным током электрохимического растворения металла, осажденного на индифферентном электроде, и концентрацией его ионов в растворе, дает возможность использовать метод инверсионной вольтамперометрии твердых фаз в аналитических целях. Возможность определения элементов методом инверсионной вольтамперометрии металлов определяется рабочей областью потенциалов применяемого индифферентного электрода. Лучшими с этой точки зрения являются специально подготовленные графитовые электроды. Они электрохимически устойчивы, реакции разряда — ионизации водорода и кислорода протекают на этих электродах с большим перенапряжением. Так, в нейтральной среде практически свободен интервал потенциалов (-f0,9) — (—1,2) в относительно насыщенного каломельного электрода, в кислой среде он смещается в положительную, в щелочной— в отрицательную сторону. Таким образом, возможно определять и благородные металлы, и металлы сдвинутые в ряду напряжений в сторону отрицательных потенциалов. Разработаны методики определения золота, серебра, ртути, меди, висмута, сурьмы, свинца, олова, никеля, кобальта, таллия, индия, кадмия и железа. [c.41]


    Мы только сошлемся на исследования в области осцилло-графической [199] и амальгамной [212, 213] полярографии для определения таллия и теоретические рабогы по полярографии таллия [137, 201, 653], а также на работы по полярографическому определению малых количеств таллия в породах [207], металлическом кадмии или цинке [207, 382, 422, 735, 812, 813], воздухе [150], в биологических материалах [658, 868, 880, 886, 915, 920], свинце [459, 583], индии [239, 514], горных породах [383] и других объектах [9, 62, 142, 332, 349, 372, 403, 450, 463, 476, 551, 608, 669, 797]. [c.114]

    Свойства. Зеленовато-коричневые кристаллы или порошок. Применяют для определения РЗЭ при pH 4—6 переход окраски от голубой к красной для определения висмута (III) при pH 2—3 и свинца при pH 4 переход окраски от красной к желто-оранжевой. При pH 7—8 определяют никель, кобальт, кадмий, магний и марганец переход окраски от сине-фиолетовой к красной. Методом обратного титрования определяют палладий, таллий (III), железо, индий и галлий (III), [c.273]

    Припои оловянно-свинцовые. Спектральный метод определения примесей сурьмы, меди, висмута, мышьяка, железа и никеля Баббиты кальциевые. Метод спектрального анализа по литым стандартным металлическим образцам Свинец высокой чистоты. Спектральный метод определения ртути Порошок цинковый. Метод спектрального анализа Сплавы цинковые. Метод спектрального анализа Индий. Спектральный метод определения галлия, железа, меди, никеля, олова, свинца, таллия и цинка Индий. Спектральный метод определения ртути и кадмия Индий. Спектральный метод определения кадмия [c.822]

    Таллий. Метод химико-спектрального определения алюминия, железа, висмута, кадмия, индия, меди, марганца, никеля, свинца, серебра и цинка [c.588]

    Описанный атомизатор графитовая капсула — пламя был использован для определения меди, свинца, кадмия, индия, теллура, сурьмы, висмута и таллия в порошковых пробах сульфидных руд. Работа выполнена на СФМ Сатурн с электронным интегратором Спектр 3-2 для интегрирования абсорбционных [c.68]

    Мы сознательно привели так много выдержек из работ Менделеева, касающихся индия и его атомного веса, чтобы показать, сколько трудностей вызывал этот элемент, сколько беспокойств причинял он менделеевской научной мысли и как настойчиво требовал решения вопроса о том, куда же его поставить в системе элементов. Были три причины, которые затрудняли решение этой задачи. Первая состояла в том, что, как мы видели, окиси индия упорно приписывался состав 1пО это заставило думать, что индий — аналог цинка и кадмия, около которых было свободное место в системе. Второй причиной было то, что таллий Т1 = 204 включался в группу щелочных металлов и не рассматривался как аналог индия, так что у индия вообще не оказалось настоящих аналогов. Наконец, третья причина заключалась в том, что подлинное место самого индия было занято с самого начала ураном (Ur=116) хотя затем Менделеев снял отсюда уран, все же другого места для урана долгое время не было найдено, и пока уран оставался без определенного места в системе, использование его первоначального места для другого элемента, в том числе и для индия, психологически было затруднительно. Иными словами, решение задачи для урана и индия оказывалось сопряженным одно связывалось с другим, одно зависело от другого и влияло на другое. [c.58]


    Этот же принцип использован для определения кадмия в присутствии никеля и цинка 15]. Серия работ по определению кадмия в различных смесях с другими ионами выполнена на танталовом электроде по току окисления комплексона при +1,2 В (Нас.КЭ). Часть этих работ описана в разделе Висмут и в разделе Индий и поэтому, во избежание повторений, в данном разделе не рассмотрена. На том же электроде титруют кадмий в присутствии ртути(11), цинка и свинца(П) [16] и таллия(1) и серебра (I) [17]. [c.178]

    Ниже приведены методы определения мышьяка в сурьме, ниобий, ванадии, кремнии, галлии, индии и таллии, разработанные В. А. Назаренко с сотрудниками [28], а также в цинке и кадмии [c.151]

    Описаны методы определения следов редких и других элементов в кремнии, германии, галлии, индии, таллии, мышьяке, сурьме, фосфоре, алюминии, свинце. Висмуте, цинке, кадмии, сере, селене, теллуре, иоде, боре, графите, реактивах и других материалах. [c.31]

    Методы, описанные в книге Сендела, могут быть также использованы для определения в железных порошках содержания меди, магния, кальция, бария, цинка, кадмия, алюминия, скандия, церия, редкоземельных элементов, галлия, индия, таллия, германия, олова, свинца, титана, мышьяка, сурьмы, висмута, ванадия, хрома, молибдена, вольфрама, марганца, кобальта и никеля. [c.19]

    В результате всех этих исследований разработаны методы определения в среднем 6—8 элементов-примесей в чистых веществах, используемых в реакторной и полупроводниковой технике (графит, уран, свинец, висмут, цирконий, бериллий, кремний, германий, галлий, мышьяк, арсенид галлия, индий, таллий, фосфор, сурьма, цинк и др.), а также в других чистых материалах (бор, молибден, ниобий, иттрий, европий, кадмий). Созданы методы активационного определения целого ряда примесей в 22 веществах высокой чистоты с чувствительностью 10 —10 °%. [c.5]

    Описан метод определения малых количеств индия дитизоном и исследовано влияние меди, свинца, железа, никеля, кобальта, цинка, галлия, олова, алюминия, марганца, кадмия и таллия на получаемые результаты. [c.500]

    В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными иовые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутеш й, ниобий), с помощью введенного в практику спектр, анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс мн. хим. элементов. [c.211]

    При анализе металлического индия кадмий отделяют экстракцией в виде пиридин-роданидного комплекса хлороформом [290]. Определение кадмия в таллии проводят после предварительного осаждения последнего роданидом и последующей экстракции кадмия в виде пиридин-роданидного комплекса [289], в металлическом хроме — после предварительного отделения мешающих элементов на анионите [390[. Определение окиси кадмия и свободного металла в его селениде проводят экстракцией дитизоната из 2,5 N раствора NaOH [422]. При анализе платино-родиевых сплавов мешающие элементы сорбируют на катионите Амберлит IR-120 [649]. Дитизон применен для определения кадмия в сульфиде цинка высокой чистоты [166], металлическом висмуте [124], едком нат- [c.89]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    В случае окрашенных комплексов содержание определяемого элед1ента устанавливают путем фотометрирования полученного экстракта. Экстракция бесцветных комплексов используется для отделения определение заканчивают после соответствующей обработки экстракта. Так, для определения примеси кадмия в индии и таллии пиридинродапидный комплекс кадмия экстрагируют хлороформом. Экстракт выпаривают, сухой остаток обрабатывают азотной и серной кислотами. Определение кадмия заканчивают с помощью дитизона [367]. [c.253]


    Саюн М. Г., Цыб П. П. Электролитическое отделение индия, таллия, цинка и кадмия и их определение из одной навески.— Завод, лабор., 1959, 25, № 7, 793—795. Библиогр. 4 назв. [c.204]

    Смин свинца составляет Ы0 %, а индия и сурьмы — 2-10- %. Определению свинца и индия в плутонии не мешают висмут, таллий, медь, железо, цинк, уран и серебро, а также галлий, марганец и ванадий, не дающие пиков на ДИП в по лярографируемом растворе. Определению сурьмы мешает висмут при Св1/Сзь 0,3 и таллий при Ст/Сзь 1. Определению индия мешают относительно высокие концентрации кадмия (Д п = 0,15 В). На ДИП растворов диэтилдитиокарбаминатов свинца, индия, а также кобальта, никеля и кадмия наблюдаются адсорбционные пики при более положитель- [c.204]

    Семерано [34] разработал метод определения кадмия, индия и таллия в материалах, содержащих цинк в качестве основного элемента. Анализируемое вещество растворяют таким образом, чтобы получить раствор хлоридов с 25%-ной концентрацией цинка, и определяют сумму таллия, индия и кадмия полярографически. Часть раствора выпаривают, но не до полного удаления кислоты, остаток растворяют в таком количестве воды, чтобы получить 50%-ный раствор относительно цинка, снимают полярограмму для таллия и суммы кадмия и индия. Другую часть первоначального раствора встряхивают 1 час с ZnO (нагретого для удаления карбонатов), осадок центрифугируют и определяют кадмий в растворе по высоте волны с учетом содержания таллия. Осадок растворяют в НС1 и определяют индий. [c.88]

    Предварительное концентрирование металла в объем ртутного микроэлектрода обычно проводят при потенциале предельного тока восстановления исследуемого иона. Этим путем можно получить амальгамы металлов I и II групп периодической системы, редкоземельных элементов, а также таллия, индия, галлия, цинка, кадмия, свинца, висмута, алюминия, меди, серебра и золота (рис. 11.1). Однако щелочные металлы имеют столь отрицательные потенциалы восстановления, что их концентрирование из водных растворов практически невозможно. Как правило, эти металлы определяют в органических средах, например, в диметилформамиде на фоне четвертичных аммониевых солей. То же в значительной степени относится и к щелочноземельным металлам. Кроме того, из-за близости потенциалов окисления металлов I и II групп нельзя ожидать высокой селективности при огфеделении данных ионов. Поэтому метод ИВА практически не применяется для определения щелочных и щелочноземельных металлов. [c.417]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Определению мешают кедь, кадмий, свинец, никель, кобальт, висмут, ртуть, индий, таллий, серебро, золото, палладий, хлор, бром, иод, железо (III), перекиси [c.319]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Гравиметрический метод определения 0,1 г таллия в 100 мл раствора с помощью хромата калия является одним из наиболее точных [18]. К 100 мл раствора добавляют 3 мл аммиака (2 1), нагревают до 70—80° С, вводят избыток 10%-ного раствора хромата калия, охлаждают и отстаивают несколько часов. Полученный после фильтрования через тигель Гуча осадок промывают 1%-ным раство-"ром осадителя, затем 50%-ным этиловым спиртом, сушат при 120— 130° С и взвешивают в виде хромата таллия. Помехи от серебра, ртути и меди устраняют добавлением цианида калия. 50%-ный раствор сульфосалициловой кислоты подавляет влияние галлия, индия, алюминия, железа и меди. Винная кислота с достаточным количеством аммиака предотвращает влияние цинка, кадмия, никеля, кобальта и молибдена. [c.154]

    Метод экстракции. Он заключается в экстрагировании искомых элементов из основной массы раствора каким-либо экстрагенто.м. Затем экстрагент удаляется, а определяемые элементы обрабатывают соответствующими фонами и полярографируют в малом объеме (0,1—1,0 мл). Таким способом Поль и Бонзельс [25] определили примеси свинца, кадмия, железа, индия, меди, никеля, таллия, висмута и цинка при содержании 1.10 % каждого в кремнии ос. ч. с предварительной экстракцией диизопропиловым эфиром некоторых из перечисленных элементов. Определение 10 % свинца и 10 % цинка в хлористом натрии х. ч. [26] проводили путем экстракции их дитизоном в растворе с pH 9 с последующим разрушением последнего и полярографированием на фоне винной кислоты и ацетата аммония. При определении следов цинка в сульфате никеля [27] цинк экстрагировали из раство-вора дитизоном при добавлении цианистого калия (для блокирования никеля) и ацетата натрия (pH 5—5,5) и затем после разложения экстрагента полярографировали на фоне 0,1 М раствора уксусной кислоты и 0,025 М раствора роданида калия. При содержании 0,001% цинка ошибка определения составляла 6%. [c.85]

    ЭДТА и другие комплексоны этого типа продолжают играть важную роль в амперометрическом определении меди [39—45]. Есть рекомендации для определения меди в присутствии магния [45] цинка [46], серебра и таллия [47]. Определение меди при помощи комплексонов в присутствии других элементов описано в соответствующих разделах ( Висмут , Железо , Индий , Лантан , Кадмий , Палладий , Ртуть , Молибден , Серебро ). [c.207]

    Имеется много примеров применения экстракции для выделения следов элементов при концентрациях порядка 10 —10" %. При анализе кадмия высокой чистоты Т1 при содержании порядка 10" % экстрагировали эфиром из 8 М НС1 и затем определяли полярографически [76]. До 10" % таллия и железа в индии определяли полярографически после экстрагирования примесей диизопропиловым эфиром из 6 М НС1 [77]. В очищенном зонной плавкой алюминии определяли спектрофотометрически 5-10 % железа после экстракции метилизобутилкетоном из слабокислого концентрированного раствора хлорида алюминия [78]. Примесь золота в меди (менее 10" %) отделяли экстракцией этилацетатом из раствора, содержащего азотную и соляную кислоты, и затем определяли спектрофотометрически [79]. Экстракцию бора раствором хлорида тетрафениларсония в хлороформе применяли при эмиссионном спектральном определении бора в уране [80]. Нижний предел определения 5-10" %. [c.98]

    Широкое практическое применение получило полярографированне таллия в водных растворах. Полярографический метод успешно применяется при определении примесей таллия в цинке высокой степени чистоты [148], свинце [149], кадмии [150, 151, 152], индии [153], солях цинка в присутствии олова [154[. [c.188]

    Так как элементы подгруппы европия оказываются менее электроположительными, чем щелочноземельные металлы, но более электроположительными, чем цинк, кадмий и ртуть, то подгруппа Ис располагается между Ия и Пй подгруппами. Поскольку элементы подгруппы гадолиния менее электроположительны, чем лантан, но более электроположительны, чем галлий, индий и таллий, подгруппа П1с находится правее подгруппы Ille и левее подгруппы Illa. Электроположительность элементов возрастает от подгрупп углерода и титана к подгруппе церия, поэтому подгруппа IV должна располагаться слева от подгрупп титана (1УЬ) и углерода (IVa). В V—VIII группах элементы подгрупп с более электроположительны и должны быть помещены слева от подгрупп Ь и а, как и в IV группе. Вытекающее отсюда расположение указано в табл. 5. В этой таблице/-переходные металлы, выделенные в подгруппы с, совершенно определенным образом расположены относительно подгрупп а и fe, причем это взаимное расположение подгрупп точно соответствует менделеевскому принципу усиления металлических свойств влево, а неметаллических вправо. Периодическая система элементов с вертикальными столбцами подгрупп а, Ь и с полностью удовлетворяет периодическому закону, поскольку в ней все без исключения элементы расположены в последовательности [c.22]


Смотреть страницы где упоминается термин Таллий, определение в индии, кадмии: [c.168]    [c.173]    [c.317]    [c.440]    [c.231]    [c.197]    [c.121]    [c.386]    [c.669]    [c.76]    [c.53]    [c.344]    [c.244]    [c.29]    [c.32]    [c.20]   
Физические методы анализа следов элементов (1967) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Индий

Индит

Кадмий определение

Определение индия и таллия

Таллий



© 2025 chem21.info Реклама на сайте