Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото определение, методика

    Определение золота в золе растений . Растворяют 0,05—0,1 г золы растения, хорошо растертой и прокаленной при 400—500 °С, в 5 мл смеси азотной и соляной кислот (1 3) в стеклянном тигле объемом 20—25 мл. Выпаривают раствор на водяной бане до состояния влажных солей, добавляя 2—3 кристалла хлорида натрия. Растворяют влажный остаток в 1 М соляной кислоте, переносят в мерную колбу емкостью 100 мл и доводят до метки той же кислотой. Затем продолжают анализ, как указано в методике определения золота в сурьме. [c.44]


    Зависимость, существующая между максимальным током электрохимического растворения металла, осажденного на индифферентном электроде, и концентрацией его ионов в растворе, дает возможность использовать метод инверсионной вольтамперометрии твердых фаз в аналитических целях. Возможность определения элементов методом инверсионной вольтамперометрии металлов определяется рабочей областью потенциалов применяемого индифферентного электрода. Лучшими с этой точки зрения являются специально подготовленные графитовые электроды. Они электрохимически устойчивы, реакции разряда — ионизации водорода и кислорода протекают на этих электродах с большим перенапряжением. Так, в нейтральной среде практически свободен интервал потенциалов (-f0,9) — (—1,2) в относительно насыщенного каломельного электрода, в кислой среде он смещается в положительную, в щелочной— в отрицательную сторону. Таким образом, возможно определять и благородные металлы, и металлы сдвинутые в ряду напряжений в сторону отрицательных потенциалов. Разработаны методики определения золота, серебра, ртути, меди, висмута, сурьмы, свинца, олова, никеля, кобальта, таллия, индия, кадмия и железа. [c.41]

    Определение серебра в золоте. Спектрофотометрический дитизоновый метод можно использовать [253, 1224] после растворения пробы в царской водке и удаления золота из этого раствора экстракцией этилацетатом. Потенциометрическое титрование раствором KJ применено [1101] для определения серебра и других примесей в золоте по следующей методике. [c.181]

    Один метод локализации со специфической физиологической активностью был позаимствован нз ПЭМ. Этот метод меток поверхности клетки, который, будучи применен к образцам для РЭМ, приводит к образованию на поверхности клетки морфологически различаемых или аналитически идентифицируемых структур. Такие методики в сочетании с растровой электронной микроскопией высокого разрешения позволяют изучать природу, распределение и динамические свойства антигенных и рецепторных состояний на поверхности клеткн. Методы нанесения меток на поверхность клетки в общем случае достаточно сложны и включают процедуры иммунохимической и биохимической очистки. Подробные ссылки на них можно найти в работах [359—361], но сущность методик состоит в следующем. Для крепления антител в определенных антигенных состояниях на поверхности клетки используются стандартные иммунологические процедуры. Хитрость состоит в том, чтобы модифицировать антитела таким образом, чтобы они также несли морфологически различимую метку, такую, как латексные шарики или сферы из двуокиси кремния, распознаваемый вирус, как, например, вирус табачной мозаики, или один из Т-четных фагов, как показано на рис. 11.18, илн белковая молекула известных размеров, как ферритин или гемоцианин. В работе [362] (рис. 11.19) использовались гранулы золота, которые имеют большой коэффициент вторичной электронной эмиссии. Одна часть антитела имеет средство для специфичного антигенного закрепления на поверхности клетки, в то время как другая часть несет морфологически различимые структуры. В настоящее время иммунологические методы достигли такого уровня, когда они не могут быть использованы для изучения как качественных, так и количественных характеристик поверхности клетки [363, 364]. [c.244]


    Методика позволяет выявить точечные дефекты, точки выхода дислокаций, одномерные нерегулярности, например ступени скола, кристаллические поверхности, которые могут обладать различными характерными особенностями расположения ионов, что определяет количество, а при определенных условиях и форму выделяющихся кристалликов золота. [c.136]

    Для определения используют резонансную линию 2428 А, и только в одной работе [1433] авторы использовали линию 6278 А. В большинстве методик определению золота не мешают его обычные спутники — платиновые металлы и серебро [188, 1433]. [c.182]

    Для определения ртути в веществах, содержащих азот, была предложена другая методика сожжение в токе углекислоты в трубке, наполненной хроматом свинца, медью и посеребренными черепками [5041, или сжигание вещества в токе кислорода, вытеснение последнего углекислым газом, пропускание ртути, загрязненной нитратом ртути, через раскаленную медь и улавливание чистой ртути на золотую пластинку [8291. [c.174]

    Анализ в древности. Химический анализ проводится с незапамятных времен. Первый аналитический прибор — весы — известен с глубокой древности. Анализу подвергали руды, сплавы, изделия из драгоценных металлов. У римского историка Плиния описана методика анализа золота, еще раньще об оценке содержания золота писал император Вавилона. Плиний пишет об использовании экстракта дубильных орешков в качестве реактива. С помощью папируса, пропитанного экстрактом, отличали медь от железа (в растворе сульфата железа папирус чернел). В древности умели определять концентрацию по удельному весу само понятие удельный вес известно по крайней мере со времен Архимеда. По-видимому, вторым по времени появления аналитическим прибором был ареометр, он описан в трудах древнегреческих ученых. В произведении Теофраста О камнях говорится об определении золота с помощью так называемого пробного, или пробирного, камня способ этот применяется и до сих пор, наприм в инспекциях пробирного надзора. [c.14]

    Оценивая стоимость анализа, учитывают также стоимость и доступность реактивов время, затрачиваемое на обнаружение или определение одного компонента массу анализируемой пробы, особенно в тех случаях, когда дорогостоящим является сам материал анализируемого объекта (сплавы и слитки платиновых металлов, золота и т. п.). При прочих равных условиях для решения поставленной задачи следует выбирать наиболее дешевые метод и методику проведения анализа. Некоторая информация, относящаяся к выбору подходящего метода анализа, представлена в сжатом виде в табл. 1.9 классические методы, избранные инструментальные методы и недеструктивные методы. [c.38]

    Растворяют 0,15—0,20 мг анализируемого образца в 5 мл смеси азотной и соляной кислот (1 3). Раствор выпаривают на водяной бане до состояния влажных солей, добавляя 2—3 кристалла хлорида натрия при определении золота в покрытии на вольфраме, или мл М раствора соляной кислоты при определении золота в покрытии на молибдене. Переносят раствор в мерную колбу емкостью 25 мл. и доводят до метки раствором 1 М соляной кислоты. Продолжают анализ, как указано в предыдущей методике. [c.43]

    Интерметаллические соединения не всегда являются вредным фактором в методе ИВ в аттестованных методиках определения мышьяка в различных объектах сигнал А8(1П) получают при растворении его ИМС с золотом (на золотом или золото-графитовом электроде), см. п. 6.5.6. [c.777]

    Чувствительность известных кинетических методов определения платиновых металлов и золота колеблется от 0,1 до 10 мкг/мл. Избирательность их, однако, невелика. Теоретические основы кинетических методов анализа, а также методики определения ряда элементов даны в специальном руководстве по кинетическим методам [421]. [c.206]

    По этому поводу стоит напомнить, что Архимед, когда он должен был установить, содержит ли корона сиракузского тирана Герона, кроме золота, другие металлы (серебро, медь), прибег не к химической методике, а к физической, связанной с определением удельного веса. Отсюда можно было бы заключить, что способы отделения серебра от золота в древности не были известны Пример этот, однако, не очень убедителен по двум причинам. Во-первых, Архимед, следуя прихоти тирана, не мог ничего отрезать от короны так, чтобы это не было заметно, а должен был избрать физический способ, так сказать, менее рискованный во-вторых, для объяснения того, что Архимед избрал именно названный метод, надо принять во внимание его глубокие познания в гидростатике. Как бы там ни было, остается фактом, что в древности не было известно практического метода отделения серебра от золота вследствие свойственных самому этому методу трудностей, о которых имели уже представление алхимики. [c.17]

    Оценивая стоимость анализа, учитывают также стоимость и доступность реактивов время, затрачиваемое на обнаружение шш определение одного компонента массу анализируемой пробы, особенно в тех случаях, когда дорогостоящим является сам материал анализируемого объекта (сплавы и слитки платиновых металлов, золота и т. п.). При прочих равных условиях для решешм поставленной задачи следует выбирать наиболее дешевые метод и методику проведения аналюа. [c.29]


    В работе [4] приведены еще две методики определения примесей полярографическое определение цинка, кадмия и свинца амальгамным способом с накоплением (чувствительность онределения цинка 3-10 %, кадмия и свинца 1-10 °%) и радиоактивационное определение меди, цинка, теллура, золота, мышьяка, сурьмы, селена и серы (чувствительность [c.358]

    Можно рекомендовать полезную экспериментальную методику с применением радиоизотопных индикаторов, проверенную нами на технеции-99, а также авторами работы [16] на радиоактивном изотопе золота и плутонии. Испарение производится из исследуемой эффузионной камеры с определенным фиксированным размещением препарата внутри ее. Конденсат полностью собирается на полусферическом охлаждаемом приемнике паров, например при средней температуре экспериментального диапазона. Затем делается авторадиограмма с приемника паров, которая детально исследуется. В работе [17] на приемник паров накладывалась медная полоска, которая затем разрезалась на отдельные квадраты, радиоактивный конденсат на которых определялся на счетчике частиц. Далее по этим данным строился график распределения конденсата. Из анализа формы кривых углового распределения в молекулярном пучке из эффузионного отверстия можно заметить, что полученные закономерности напоминают перевернутое изображение в фотокамере с малым отверстием диафрагмы. Молекулярный пучок воспроизводит на приемнике паров изображение не только внутренней геометрии ячейки, но также форму испаряемого образца. По аналогичным фотографиям можно экспериментально отработать оптимальный вариант конструкции испарительной ячейки, установить потери испаряемого вещества на ее стенках и проследить кинетику установления равновесного режима в гетерогенной эффузионной камере для проведения термодинамического эксперимента. [c.314]

    Майкснер и Креккер [466] впервые описали методику определения ртути в малых количествах органических веществ. Вещество сжигают в кислороде или воздухе, продукты сгорания проходят над нагретой СаО и пары ртути поглощаются в абсорбционной трубке, заполненной металлическим золотом. Эта методика дает воз]можн0сть определять ртуть в веществах, содержащих одновременно хлор и серу. Впоследств1ии она была модифицирована и приспособлена для одновременного определения азота [256]. [c.143]

    Приведены результаты изучения сравнительных характеристик четырех типов графитовых электродов на примере определения зо-зота для выбора электрода, обладающего наилучшими аналитическими свойствами. Показано, что электрод из угольной пасты, обладающий минимальным остаточным током и максимальной чувствительностью по золоту, можно рекомендовать в качестве оптимального для определения микроколичеств золота. Разработаны методики определения золота по норме 1 10 % в фосфорной кислоте, азотнокислых солях кобальта и алюминия. Табл. 1, библ. 8 иазв. [c.281]

    Давыдов и Сабатино- описывают определение остаточных количеств хлорсодержащих инсектицидов при использовании в качестве биологического объекта золотых рыбок. Методика основывается на том, что рыбки обладают такой же чувствительностью к хлорсодержащим инсектицидам, внесенным в воду, как теплокровные к инсектицидам, вводимым в вену. [c.277]

    Сравнение защитного действия различных веществ производится по отношению к одному и тому же гидрофобному золю. В качестве такого стандарта избран красный золь золота, приготовленный по строго определенной методике. Такой выбор имеет свои преимущества. Золь золота можно приготовить дос-чаточно монодисперсным. Этот золь весьма чувствителен к действию электролитов, легко коагулирует. При этом начало коагуляции легко устанавливается по перемене окраски золя из красного в фиолетовый. [c.441]

    Предложены две методики определения ртути сожжением. Для анализа веществ, не содержащих азота, применяют методики, предложенные Боэтисом [5041 (сожжение в кислороде серу, хлор и бром удерживают нагретой окисью свинца, иод — слоем глиняных черепков, покрытых серебром) или Юречеком [8271 (сожжение в кислороде с платиновым контактом хлор и бром поглощают безводным углекислым натрием, иод удерживают серебром, диспергированным на окиси магния, ртуть —золотом). [c.174]

    Альфонси [9—13] провел широкое исследование потенциостатического выделения и определения содержания сурьмы в сплавах, состоящих из свинца, олова, висмута и меди. Танака [14—16], работавший, главным образом, с синтетическими образцами, определил условия, при которых следует производить отделение сурьмы от золота, серебра, ртути, меди, висмута, кадмия, цинка и ванадия в целом ряде общеизвестных электролитов. Данлэп и Шульц [17] разработали две кулонометрические методики, дающие возможность определять содержание сурьмы в каждой из ее окисленных форм отдельно, а также полное содержание сурьмы. По первой методике после предварительного восстановления сурьмы (V) в присутствии гидразингидрата сурьма (П1) восстанавливается до амальгамы на ртутном катоде при потенциале —0,28 в в фоновом электролите, содержащем 0,4Ai винной кислоты и М соляной кислоты. По второй методике сурьма (V) сначала восстанавливается до сурьмы (П1) при потенциале —0,21 в, а затем далее до амальгамы при потенциале —0,35 в. Процесс восстановления проводится в электролите, содержащем 0,4 М винной кислоты и 6 М соляной кислоты. Даже в присутствии небольших количеств мышьяка, свинца, олова, железа или урана можно добиться точности 0,5% (средняя квадратичная погрешность) при содержании сурьмы 5 мг. В табл. 1 приведены различные условия эксперимента при определениях сурьмы потенциостатическим методом. [c.45]

    Имеется много методик изучения условнорефлекторной деятельности рыб. Для определения токсичности наиболее адекватной является методика двигательно-пищевых условных рефлексов . В качестве тест-объекта в этом случае используются карповые (всеядные), в частности золотая рыбка ( arassius auratus L.).  [c.128]

    Максимум твердости поверхности. Для определения бд твердых металлов можно также проводить измерения твердости поверхности в зависимости от потенциала по Ребиндеру и Венстрем При максимальной величине поверхностного натяжения на образование микротрещин и связанную с этим деформацию поверхности требуется наибольшая энергия, поэтому при потенциале 8д следует ожидать максимума твердости. Ребиндер и Венстрем применили маятник, качания которого затормаживались благодаря трению металла о шероховатую поверхность стеклянного шара. Несколько изменив эту методику, Бокрис и Парри-Джонс исследовали зависимость трения гладких шаров от потенциала. Боуден и Янг до этого нашли потенциал максимума трения на платине, который совпадал с бмако найденным Городецкой и Кабановым из измерений краевых углов смачивания. Согласно данным Пфютценройтера и Мазинга неэластичное растяжение проволок и фольги зависит от потенциала. Для золота найден отчетливый минимум (наибольшая прочность). В некоторых случаях можно констатировать совпадение результатов, полученных этими и другими методами (табл. 4), [c.112]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Осаждение нитритом натрия . Следующая методика может быть применена для осаждения и определения золота в растворах, содержащих только одно золото или золото и платиновые металлы, а также золото, платиновые металлы и некоторые неблагородные металлы, как, например, медь, цинк и никель. Описанная здесь методика касается только определения золота, поэтому она упрощена и несколько отличается от методики, приводймой в цитируемой работе, в которой предусматривается также шхределение и других металлов. [c.420]

    Большинство методов количественного определения плати новых металлов и золота, и в особенности физико-химические методы, разработаны для определения этих элементов в растворах их комплексных хлоридов и часто являются непригодными в том случае, если определяемые элементы находятся в форме других комплексных соединений. Это обстоятельство, являющееся специфической особенностью аналитической химии элементов, обладающих склонностью к комплексообразованию, требует особого внимания при проведении ряда аналитических операций, точное и внимательное выполнение которых часто обеспечивает уопешность анализа. По этой причине такие аналитические операции, как, например, переведение в хлориды, а также некоторые приемы, используемые во многих аналитических методиках, например восстановление прокаленных металлов в токе водорода, предпосылаются изложению методов количественного определения и излагаются в вводной части. Сюда включены также методы растворения и приготовления стандартных растворов благородных металлов, которые могут служить эталонами для калибровочных кривых и использоваться при освоении методов анализа. [c.95]

    Реакция проходит быстро и сопровождается резким изменением цвета в точке эквивалентности. Метод рекамендуется для определения 20—400 мг золота. Серебро, железо, медь, никель не мешают титрованию, но окрашенные иодиды платиновых металлов затрудняют определение точки эквивалентности. Титрованию подвергают раствор Н[АиС14], для получения которого рекомендуют следующую методику. [c.153]

    Паллалш может быть определен одновременно с золотом, медью и железом, так как потенциалы полуволны палладия и этих металлов сильно различаются. Медь, железо и золото в этих условиях образуют суммарную волну. В присутствии платины возникает каталитическая волна водорода, препятствующая определению палладия. Определению палладия мешает также кадмий. Метод рекомендуется для анализа зубоврачебных сплавов. Методика приведена выше (см. стр. 191). [c.193]

    Шабарин С. К. и Фридман И. Д. Исследование некоторых вопросов пробирного анализа. (К методике анализа сплавов благородных металлов). Сб. науч. тр. (Моск. ин-т цвет, металлов и золота и ВНИТО металлургов), 1952, № 22, с. 83--92. 6200 Шаврин А. М. Спектрально-аналитическое определение ванадия в медистых песчаниках. Зав. лаб., 1949, 15, № 1, с. 66—69. [c.236]

    Было проведено очень тщательное исследование химических основ этой методики [368]. Авторы показали, что золото количественно экстрагируется в МИБК из ЗЛ1 раствора НС1. Повышение абсорбции, обнаруженное при использовании различных органических растворителей, показано в табл. VH. 1. Коэффициент распределения хлорида трехвалентного золота между НС1 и органическими растворителями был определен экспериментально. [c.202]

    Олсон [370] разработал методику предварительного атомно-абсорбционного определения золота в известняках при его содержании до 0,001 унц1т. Он предложил извлекать золото из руды нагреванием ее горячим 0,25% раствором цианида натрия. Симмонс [371] использовал эту методику для анализа золота и сравнил результаты атомно-абсорбционного анализа с данными трех независимых химических определений, проведенных различными аналитиками. Было исследовано 70 образцов, содержание золота в которых находилось в пределах 2 г/н /т (обогащениые руды) — 0,05 унц1т ( хвосты ).Сводные данные по этим анализам приведены в табл. VII. 2. Данные атомно-абсорбционного определения лучше совпадают со средним результатом трех пробирных анализов. [c.203]

    Смирнов В. К. Методика исследования золотосодержащих руд и концентратов. [Открытие ионов. Количественный анализ цианистых растворов. Определение золота и серебра в цианистых растворах. Онрв деление кислорода в растворах. Рацио нальный анализ руд и др.]. [Под ред проф. В. Г. Агеенкова]. М., 1947. 121 с с илл. (М-во внутр. дел СССР. Спец. гл упр. Главспеццветмет ). Библ. с. 118— 119 (59 назв.). 2707 [c.114]

    Райнес М. М. и Фрейдлина Б. А. Определение малых количеств фтора в белой саже. Зав. лаб., 1947, 13, № 7, с. 819—822. 5356 Райхбаум Я. Д. Методика спектроскопического иссле,цования самородного золота. Изв. АН СССР. Серия физ., 1941, 5, № 2-3, с. 246—249. Резюме на англ. яз. Библ. 6 назв. 5357 [c.206]

    Опубликовано несколько методик определения бромата. Больщинство методов основано на редокс-реакциях и неселективно. Бромат в следовых концентрациях дает цветные реакции со стрихнином, метиловым оранжевым, индигокармином и некоторыми другими соединениями. Разработан метод [17], основанный на взаимодействии бромата с о-арсиниловой кислотой с образованием красновато-коричневых продуктов реакции. Закон Бугера — Ламберта — Бера выполняется до содержания бромата 50 ррт, максимум светопоглощения измеряют при 463 нм. Определению 20 ррт бромата мешают 1 ррт иодида, бромида, иодата, нитрита, золота (III), церия (IV) и железа (III). Интенсивность окраски образующихся продуктов зависит от кислотности растворов, времени от начала реакции до выполнения измерений, температуры, присутствия окислителей и восстановителей, концентрации реагентов и бромата, общей концентрации ионов (ионной силы растворов). Окраска достигает максимума лишь через 2 мин. Чувствительность — 0,05 мкг бромата в 1 мл. В более поздних работах отмечается нестабильность окрашенного соединения [18]. [c.259]


Смотреть страницы где упоминается термин Золото определение, методика: [c.278]    [c.379]    [c.379]    [c.248]    [c.80]    [c.113]    [c.119]    [c.143]    [c.97]    [c.935]    [c.86]    [c.581]    [c.200]    [c.166]    [c.55]   
Комплексные соединения в аналитической химии (1975) -- [ c.250 ]




ПОИСК







© 2025 chem21.info Реклама на сайте