Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен дегидрирование

    Циклопентан относительно термически стабилен он не подвергается дегидрированию нри нормальных температурах крекинга, а при более жестких условиях углерод-углеродная связь расщепляется с разрывом кольца [50—53]. Циклогексан начинает разлагаться при 490—510° С, образуя большие количества водорода, этилена, бутадиена [54], бензола [55] пропилен не получается [56]. Циклогексен, по-видимому, является промежуточным продуктом, из которого затем образуются бензол и водород или бутадиен и этилен [55]. Последний вариант реакции протекает почти количественно при 800° С [56] в продуктах реакции почти нацело отсутствует циклогексадиен [57]. Нет доказательств и в пользу предположения о возможности изомеризации циклогексана в метилциклопентан при термическом крекинге [56]. [c.301]


    Бутадиен в СССР получают из этанола, одно- и двухстадийным дегидрированием н-бутана, выделением нз газов пиролиза и окислительным дегидрированием н-бутиленов. Производство его энергоемко. Расход топливно-энергетических ресурсов на 1 т бутадиена при контактном разложении этилового спирта составляет 1,77 т у. т., двухстадийном дегидрировании н-бутана — 5,67 одностадийном дегидрировании н-бутана—1,88, выделении из пиролизной фракции — 0,3 т у. т. Внедрение в производственном объединении Нижнекамскнефтехим окислительного дегидрирования позволяет экономить ежегодно 500 тыс. т топлива. [c.175]

    Дегидрирование метановых углеводородов лежит в основе получения углеводородов с кратными связями — олефинов, ацетилена. Так, из нефтяного сырья — фракций Q и Сз (бутаны и пентаны) — получают соответственно 1,3-бутадиен (дивинил) и изопрен (2-метил-1,3-бутадиен). Дегидрирование в обоих случаях идет в две стадии например, для получения дивинила  [c.282]

    В настоящее время серьезное практическое значение приобретают процессы переработки нефтяных углеводородов в 1,3-бутадиен и изопрен. Наиболее подходящим исходным сырьем для получения этих углеводородов являются н-бутан и изопентан. Переработка их осуществляется каталитическим дегидрированием либо в одну ступень с одновременным получением олефинов и диенов, либо в две ступени с предварительным дегидрированием парафинов до олефинов в первой ступени процесса и последующим дегидрированием олефинов в диеновые углеводороды во второй ступени. [c.284]

    Предложено получать бутадиен и изопрен дегидрированием бутана и изопентана в двухслойном реакторе на двух катализаторах при атмосферном давлении без промежуточного разделения продуктов реакции. По предварительной оценке предложенные катализаторы обеспечивают высокие выходы. По экономическим показателям этот процесс находится на уровне вакуумного одностадийного дегидрирования. Данные лабораторных исследований процесса при разных температурах приведены ниже  [c.661]

    Остаток из колонны со 100 тарелками состоит из и-бутана, который только в незначительной части, как азеотрон, уходит с бутадиеном, и обоих бутенов-2, которых при каталитическом дегидрировании и-бутана получается значительно больше, чем бутена-1. Этот остаток депентанизируется, а затем подвергается экстрактивной перегонке для отделения бутана от бутенов. Перегонка производится также в колонне со 100 тарелками, состоящей из двух секций. Отходящий в качестве дистиллята бутан, содержащий еще 3—4% олефинов, возвращается на первую ступень дегидрирования. Растворенная в фурфуроле смесь обоих бутенов-2 идет в разделительную колонну, откуда после освобождения от фурфурола она направляется на вторую ступень дегидрирования. [c.80]


    Этилбензол сам по себе применяется мало, но каталитическим дегидрированием он практически полностью превращается в стирол, являющийся, как известно, важнейшим компонентом смешанной полимеризации с бутадиеном для получения синтетического каучука (буна S, буна SS, GR—S-буна). Кроме того, значительная часть стирола полимеризуется в полистирол, широко применяемый в электротехнической промышленности. [c.227]

    Фракция С4 после прохождения бутан-бутеновой смеси через печь содержит 8—12% бутадиена. В этом процессе представляет интерес решение вопроса о подводе тепла, необходимого для эндотермической реакции дегидрирования. Подвод тепла при помощи перегретого водяного пара здесь невозможен, так как устойчивый против действия водяного пара катализатор № 1707 не пригоден для прямого дегидрирования к-бутана в бутадиен и может применяться только в двухступенчатом процессе. [c.87]

    При наличии больших ресурсов к-бутилена, извлекаемого из нефтезаводских газов, становится возможным производить бутадиен дегидрированием бутилена, т. е. использовать только вторую стадию описанного процесса. В США дегидрированием бутилена производится примерно половина всего вырабатываемого бутадиена [8]. Избирательность процесса дегидрирования на некоторых катализаторах превышает 90%. [c.7]

    При нагревании паров серы и бутана до температуры около 570° с продолжительностью пребывания паров в реакционной зоне около 2 сек. образуется тиофен [52]. Можно полагать, что реакция проходит через несколько фаз. Сначала, вероятно, происходит дегидрирование бутана серой в бутадиен, который затем реагирует с серой с образованием тиофена  [c.146]

    На второй ступени дегидрирования смесь трех бутенов (бутена-1 и цис-и тракс-бутенов-2) дегидрируется в бутадиен. Здесь, как и на первой ступени дегидрирования, степень превращения не превышает в среднем 22%. Выхо дящий из реакционной печи газ в основном состоит из смеси н-бутенов, бутадиена и водорода. Вследствие крекинга, изомеризации и других побочных реакций в газе содержатся также ограниченные количества изобутена, изобутана, гомологов ацетилена, в частности диметилацетилен, и выше- и ниже-кипящие составные части. [c.81]

    В тех же условиях в продуктах пиролиза этилена содержатся высокомолекулярные олефины — продукт сополимеризации бути — ленов с этиленом. При температурах 600 °С и выше в продуктах термолиза этилена появляются бутадиен и водород в результате дегидрирования бутена—1. [c.32]

    Дегидрирование к-бутена в бутадиен можно осуществить одним из двух способов. По способу Филлипса [4] к-бутеновый концентрат пропускают над катализатором окись хрома — окись алюминия при температуре 670—680°. [c.85]

    Для получения бутадиена применяется каталитическое дегидрирование как н-бутана, так и -бутиленов. При одной и той же температуре в условиях, не благоприятствующих реакциям крекинга, дегидрирование бутиленов дает болео высокие равновесные выходы. Например, при температуре 650° С и атмосферном давлении конверсия до бутадиена для нормальных бутиленов составляет от 47 до 57%, а для и-бутана всего 14%. Однако с уменьшением давления до 0,167 ат равновесное превращение -бутана в бутадиен увеличивается до 49% (рис. 2). [c.200]

    Изучена активность 14 индивидуальных окислов в реакциях окисления н-бутана и н-бутенов [40, 41, 42]. По каталитической активности в реакции окислительного дегидрирования н-бутана в н-бутены и бутадиен исследованные окислы располагаются в ряд [c.692]

    Два катализатора, разработанные для дегидрирования бутена — 1707 и 105 (см. раздел о бутадиене) — превосходят по своей активности катализатор, применявшийся первоначально на заводе Дау по производству стирола. Однако в связи с тем, что этилбензол дегидрируется легче, использование катализатора 105 не даст таких больших преимуществ, как в случае дегидрирования бутена. Вполне возможно применение катализатора 1707 , ие требующего частой регенерации. Однако поскольку на заводах по производству бутадиена катализатор 1707 был заменен катализатором 105 , последний получил распространение на заводах по производству стирола. [c.209]

    В табл. П-13 приведено расчетное равновесие между -бутаном, м-бутенами и 1,3-бутадиеном при различных температурах и 1,0 и 0,167 атмосферах давления. Из-за сопровождающих дегидрирование реакций крекинга образуется некоторое количество углерода, которое необходимо периодически удалять с катализатора. Это производится при помощи выжигания воздухом. Сообщают, что образование кокса увеличивается с молекулярным весом исходных олефинов, но данные табл. П-14 наводят на мысль, что и время контакта играет важную роль. Эти цифры были получены в опытах нри давлении 0,25 ати над катализатором, содержащим 4% хрома на алюминии. [c.101]

    Использование бутадиена для синтеза хлоропрена не удорожает существенно его производство. Проектная себестоимость производства хлоропрена, основанного на бутадиене, получаемом одностадийным дегидрированием бутана, остается на уровне нлн несколько ниже себестоимости хлоропрена, получаемого ацетиленовым методом. [c.67]

    Бутадиен, получаемый дегидрированием бутана и бутенов, имеет концентрацию не менее 98,5%. Содержание примесей бутенов— не более 1,5%), сернистых соединений — не более 0,01% (в пересчете на сероводород), карбонильных соединений — не более 0,006%. [c.244]

    До возникновения повышенного спроса на стирол в связи с принятой с началом войны в США программой производства синтетического каучука его получали в небольшом количестве путем дегидрирования этилбензола. Для производства бутадиена в нефтяной промышленности применялись процессы высокотемпературного термического крекипга лигроинов и газойлей. При этом получались также другие ценные диолефины, такие как изопрен и циклопентадиен. Выходы бутадиена составляли всего лишь от 2 до 5% на сырье. К концу второй мировой войны процесс термического крекинга был также использован для получения так называемого qui kie бутадиена. Однако большая часть бутадиена получалась в результате дегидрирования бутенов. Применение бутана п тсачестве сырья для получения бутадиена составляло лишь небольшую долю намеченной программы. Широкое применение нашел сравнительно дорогой процесс превращения этилового спирта в бутадиен. Разработанный в Германии процесс получения бутадиена из ацетилена не был принят. После рассмотрения всех процессов правительство США утвердило план производства бутадиена, приведенный в табл. 1. [c.189]


    Гидрированием ацетилена получают этилен в странах, где нет нефтяной промышленности. В некоторых современных процессах избирательно гидрируются замещенные ацетилены —продукты, загрязняющие бутадиен, полученный дегидрированием бутана. [c.241]

    Наиболее распространенный в промышленности контактный способ производства серной кислоты был осуществлен в начале текущего столетия. В годы первой мировой войны появились заводы синтеза аммиака. В настоящее время в крупных масштабах реализованы многие непрерывные каталитические процессы, в частности окисление этилена в окись этилена, окисление нафталина (ортоксилола) во фталевый ангидрид. Стирол производят каталитической дегидрогенизацией этилбензола, бутадиен — дегидрированием бутана или бутилена, акрилонитрил — окислительным аммонолизом метана. В нефтеперерабатывающей промышленности в очень крупных масштабах осуществляют каталитические процессы гидрообессерива-ния, крекинга, гидрокрекинга и риформинга. [c.10]

    Процесс протекает следующим образом. к-Бутаи и к-бутеи из газов циркуляции проходят над катализатором, дегидрирующим к-бутап в / -бутен, а к-бутен в бутадиен (рис. 42). После быстрого охлаждения газ компримируется и, как обычно, путем абсорбции освобождается от водорода и низко-молекулярных продуктов крекинга. Выделенная из абсорбента фракция С4 для извлечения 8—12% бутадиена обрабатывается на экстракциошюй установке аммиачно-ацетатным раствором меди. Отделяющаяся смесь к-бутана и к-бутена (газ циркуляции) вместе со свежим к-бутаном возвращается в реактор для дегидрирования. [c.87]

    Ректификационная колонна имеет 100 тарелок и разделена на две части. Бутадиен, содержащийся в смеси углеводородов С4, поступающей с первой ступени дегидрирования в виде азеот-ронной смеси с к-бутаном, кипящей при —5°, отделяется вместе с бутеном-1. Далее с бутеном-1 уходят содержащиеся в малых количествах изобутан и изобутен, а также последние следы углеводородов, кипящих ниже 4, которые не были полностью отделены нри стабилизации. Полученная таким образом фракция бутена-1 поступает на стабилизационную установку (депропанизатор), где освобождается от всех низкокиия-щих загрязнений, а оттуда направляется на вторую ступень дегидрирования. [c.80]

    В настоящее время исследования процессов окислительного дегидрирования проводятся практически во всех странах с развитой промышленностью синтетического каучука. Наибольшее развитие эти работы получили в США (фирмы Шелл , Петро-Текс , Филлипс и др.), Англии (фирма Дистиллере Компани Лимитед ), Франции и Японии. Недавно фирма Филлипс сообщила об успешной промышленной реализации процесса окислительного дегидрирования н-бутенов в бутадиен. [c.682]

    S — депропанизатор. Линии I — свободный от водорода сжат1,1й газ после дегидрирования н-бутана II — и-бутан и аутен-2 №—бутен-1 IV — н-бутан V — фурфурол VI — Сз и более легкие углеводороды VII — Сб и высшие углеводороды VIII — бутеи-1 на дегидрирование в бутадиен (вторая ступень). [c.80]

    Фрей и Гуппке показали в своей работе, что в соответствующих уело-ВИЯХ возможно избирательное дегидрирование, причем чрезмерное увеличение температуры и времени контакта способствует реакциям крекинга. Как правило, в результате "таких реакций образуется больше водорода, чем олефинов, хотя для изобутана наблюдается образование значительного количества метана, в связи с чем выход водорода снижается. Катализаторы из геля окиси хрома, примененные в ранних работах Фрея и Гуппке, оказались недолговечными. Этими те авторами [17] был запатентован более стойкий хромовый катализатор с добавкой в качестве стабилизатора окиси алюминия. После этого в литературе появились сообщения о многочисленных модификациях алюмохромовых катализаторов окиси хрома и алюминия до настоящего времени продолжают входить в состав лучших катализаторов, применяющихся для дегидрирования бутана в бутены и бутадиен. [c.195]

    Исходный бутан очищали серной кислотой, бутен аммиачным раствором хлорида меди. Бутан был 99,5%-ной чистоты и бутен 98,5—98,8%. Меченые вещества синтезировали, как описано в [14—19]. Бутан, меченный в положение 4, синтезировали из ме-тилиодида и бромистого аллила. Меченый бутан приготовляли из меченого бутена гидрированием на никелевом катализаторе, а меченый бутадиен дегидрированием меченого бутена. Удельные активности всех веществ равнялись 6—8 мккюри молъ. В реакции использовали 2 мл катализатора. Температура 635° С, скорость подачи смеси 1000— 5000 (литр смеси) (литр катализатора) (час) , что соответствовало времени контакта от 0,77 до 3,6 сек. [c.171]

    В бутадиеновом процессе Филлипса исходный материал — бутан — па первой ступени дегидрируется в бутен, который на второй ступени превращается в бутадиен. Вторая ступень работает практически так же, как первая, т. е. с катализатором 01 ись хрома — окись алюминия, который находится в обогреваемых снаружи трубках. Дегидрирование на второй ступени идет при температуре около 670°, т. е. примерно на 140° выше, чем на первой ступепи. Водяной пар подается в значительно меньшем количестве, чем в процессе Стандард Ойл. Здесь он не является теплоносителем, а служит лишь средством понижения парциального давления и уменьшения отложения кокса па катализатор. [c.86]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]

    Получающийся в результате каталитического дегидрирования концентрат углеводородов С4 содержит 1-бутен, 1,3-бутадиен, 2-бутены и некоторое количество н-бутана, изобутана и изобутилена. Вследствие образования минимально кипящей азеотропной смеси н-бутана. и 1,3-бутадиена невозможны разделение и очистка этой смеси посредством фракцио-нировки. Практически применимый метод разделения состоит из комбинации фракционной и экстракционной перегонок. Летучесть н-бутана относительно 1,3-бутадиена в присутствии растворителя, подобного обводненному фурфуролу, составляет около двух (см. табл. 15). Таким образом [c.111]

    Остатки из депропаниза-тора К-6 содержат главным образом н-бутены и бутадиен, однако в них таюке содержатся значительные количества изобутана, изобутилена, н-бутана, гомологов ацетилена, содержаш их четыре углеродных атома, и соединений с пятью и более углеродными атомами. Эта смесь поступает в колонну К-7, предназначенную для отделения 2-бутенов и имеющую 100 тарелок. Остаток из колонны К-7 содержит большую часть высококипящего 2-бутена, а также часть низкокипящего 2-бутена и С4-ацетилены. н-Бутан разделяется в колонне К-7, причем он частично попадает вместе с бутадиеном и более легкими компонентами в отогнанный продукт, а частично отбирается вместе с остатками колонны К-7. Можно направить часть остаточного продукта из колонны К-7 в колонну для отбензинивания К-11, чтобы избежать чрезмерного накопле шя и-бутана в загрузочном продукте для установки по дегидрированию бутенов. [c.113]

    Процесс одностадийного вакуумного дегидрирования бутана в бутадиен был реализован в США в начале 40-х годов и известен как процесс Гудри [2]. В последующие годы одностадийный способ получения бутадиена из бутана получил довольно широкое распространение в различных странах. Одностадийное дегидрирование изопентана в изопрен в промышленности не реализовано, однако этот процесс заслуживает внимания. Исследования, проведенные в СССР в области одностадийного дегидрирования парафиновых углеводородов в диеновые под вакуумом, позволили создать катализаторы, обеспечивающие выходы и избирательность по бутадиену и изопрену, такие, как в процессе Гудри [41—43]. Характеристика катализаторов для одностадийного дегидрирования и параметры процессов приведены в табл. 5. Технологическая схема процесса дегидрирования изопентана аналогична схеме дегидрирования бутана [44]. [c.661]

    В процессе Гудри [2, 40, 80, 88] для дегидрирования используется тепло, аккумулированное катализатором и инертным веществом катализатора. Процесс ведется над алюмохромовым катализатором, обработанным предварительно в течение 10 часов водяным паром при 760° С и смешанного с двухкратным количеством алунда [30, 31]. При продолжительности дегидрогенизационного цикла от 7 до 15 минут наблюдается снижение температуры на 50° С, после чего температура снова повышается путем выжига углерода на катализаторе неразбавленным воздухом. Путем соответствующего подбора условий можно добиться теплового равновесия между теплотой реакций и теплотой регенерации катализатора. При применении в качестве сырья к-бутана процесс может быть направлен па получение как бутиленов, так и бутадиена. Установка может работать при малых давлениях (порядка 127 мм рт. ст.), необходимых для получения хороших выходов бутадиена. Температура процесса устанавливается от 566 до 593° С, и объемная скорость от 0,8 до 2,0. В настоящее время завод в Эль-Сегундо (штат Калифорния) максимально развивает производство бутенов как сырья для последующего превращения в бутадиен посредством процесса Джерси (описанного ниже). [c.199]

    Описание процесса Гудри приведено в разделе, посвященном производству моноолефинов. Принимая во внимание то обстоятельство, что завод в Эль-Сегундо в настоящее время производит главным образом бутены, превращаемые затем в бутадиен посредством процесса Джерси, можно считать процесс Гудри наиболее пригодным для получения бутенов. Принятый на заводе двухступенчатый процесс производства бута-диенов аналогичен процессу, применяемому фирмой Филлипс Петролеум Ко . Первая стадия процесса фирмы Филлипс Ко заключается в дегидрировании бутанов над алюмохромовым катализатором до бутонов, вторая — в дегидрировании разбавленных водяным паром бутенов до бутадиена. Первоначально вторая стадия проводилась на промотирован-ном бокситовом катализаторе, а затем на более эффективном катализаторе, описанном дальше. Проектная и действительная производительности наиболее крупных заводов по производству бутадиенов путем дегидрирования приведены в табл. 12. [c.200]

    Продукты дегидрирования бутена. Конверсия бутенов до бутадиена увеличивается при увеличении температуры и уменьшении скорости подачи сырья. С увеличением глубины конверсии избирательность к бутадиену уменьшается, так как в этом случао процесс сопровоя дается образованием больших количеств газообразных продуктов крекинга, окиси углерода и кокса. При этом зависимость избирательности от глубины конверсии для катализаторов 1707 и 105 больше, чем для никелевого катализатора. [c.204]

    Между дегидрированием бутена-1 и бутена-2 большой разницы ые наблюдается. Продукты конверсии любого из этих углеводородов содержат обычно все три изомерных нормальных бутена, что, несомненно, указьшает на смещение двойной связи. В то же время при этом образуются незначительные количества изобутилена и дегидрированием последнего получается лишь незначительное количество бутадиена. Парафиновые углеводороды, папример, и-бутан, в условиях дегидрирования бутена с добавкой водяного пара также не претерпевают заметной конверсии. Однако в случае рециркуляции заводского сырья, содержащего около 70% м-бутенов, накопление в ном изобутилена и бутанов не происходит. В неочищенном бутадиене могут присутствовать в небольших количествах такие вещества, как аллен, метилацетилен, винилацетилен, этилацетилен, бутадиен-1,2, диацетилен и димотилацетилен. В больших количествах эти продукты содержатся в бутадиене, полученном при высокотемпературном термическом крекинге. [c.206]

    Стирол может быть нолучен дегидрированием этилбензола точно таким же образом, каким получается бутадиен из н-бутенов. Для обоих видов углеводородов могут быть использованы аналогичные катализаторы и технологические схемы, причем дегидрирование этилбензола происходит легче, чем дегидрирование бутона. В связи с повышенной реакционной способностью этилбензола, ого дегидрирование можно проводить пад катализаторами, пе достаточно пригодными для дегидрирования бутенов, и установки по производству стирола функционировали до того, как были получены катализаторы, пригодные для промышленного производства бутадиена. [c.206]

    Если тепловой эффект реакции не слишком велик, то, регулируя температуру входа, можно удовлетвориться адиабатическим протеканием процесса. К этому типу принадлежали первоначальные установки каталитического крекинга Гудри. Хотя они состояли из нескольких реакторов, но работали аппараты попеременно по десятиминутному циклу, состоящему из собственно крекинга и регенерации. Дегидрирование бутана в бутен и бутадиен выполняется теперь по той же схеме. [c.371]

    Бутадиен можно получить в одну ступень непосредственно из н-бутана [247, 248], но на практике обычно начинают с имеющихся в распоряжении н-бутенов, или сначала превращают л-бутан в н-бутены, а затем во второй ступени заканчивают дегидрирование [250, 251]. Более высокий равновесный выход бута-диенов получается, когда дегидрирование начинают с к-бутенов. На практике сырье, содержащее около 70% бутенов при 540° С, гсмешивается с 20—30-кратными объемами водяного пара при 1300° С и пропускается через слой катализатора от 1,2 до 1,8 ле [c.100]

    Как следует из рассмотрения значений s углеводородов С4 и s (табл. 3, 4), экстрактивной ректификацией с полярными органическими экстрагентами могут быть успешно разделены бутан-бутеновые, бутен-бутадиеновые, бутадиен-бутиновые (бутени-новые), пентан-пентеновые и пентен-пентадиеновые смеси. Экстрактивная ректификация с органическими экстрагентами является неэффективной при разделении смесей 1,3-бутадиена с пропином и 1,2-бутадиеном (метилалленом). Удаление этих примесей должно осуществляться обычной ректификацией. Схема процесса выделения чистого 1,3-бутадиена из фракций С4, получаемых при дегидрировании, крекинге и пиролизе, таким образом, состоит из следующих узлов (рис. 3, 4) 1) экстрактивная ректификация от бутанов и бутенов, 2) экстрактивная ректификация от -ацетиленов С4, 3) ректификация от пропина, 4) ректификация от метилаллена (и других тяжелых примесей). [c.672]


Смотреть страницы где упоминается термин Бутадиен дегидрирование: [c.85]    [c.7]    [c.60]    [c.80]    [c.90]    [c.115]    [c.205]    [c.692]   
Органическая химия (1968) -- [ c.59 ]

Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.78 , c.79 ]

Производство сырья для нефтехимических синтезов (1983) -- [ c.142 , c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен Дивинил дегидрирование

Бутадиен дегидрирование бутана

Бутадиен общая характеристика окислительное дегидрирование

Бутадиен-стирольные дегидрирование

Бутадиен-стирольные каучуки дегидрирование

Бутадиен-стирольные каучуки дегидрирование в кипящем слое катализатора Ill

Бутадиен-стирольные латексы газа дегидрирования бутана

Бутадиен-стирольные латексы дегидрирование

Бутадиен-стирольные латексы дегидрирование в бутадиен

Двухстадийное дегидрирование я-бутана в бутадиен

Двухстадшшое дегидрирование бутана в бутадиен С Дегидрирование бутана в бутил ены

Дегидратация и дегидрирование этанола с получением бутадиена

Дегидратация и дегидрирование этилового спирта с получением бутадиена

Дегидрирование бутена в бутадиен

Дегидрирование бутенов в бутадиен

Дегидрирование бутиленов в бутадиен

Дегидрирование к-бутиленов (вторая стадия двухстадийного меГ тода получения бутадиена)

Дегидрирование н-бутана с применением пылевидного катализатора в кипящем слое (первая стадия двухстадийного метода получения бутадиена)

Дегидрирование парафинов и олефинов. Производство бутадиена и изопрена

Катализаторы полимеризации бутадиена дегидрирования этилбензола

Образование бутана и бутадиена при дегидрировании смеси бутан — бутен на алюмохромовом катализаторе

Одностадийное дегидрирование бутана в бутадиен

Одностадийное дегидрирование н-бутана в бутадиен (процесс Сведения о других методах дегидрирования

Получение бутадиена и изопрена дегидрированием и другими нефтехимическими процессами

Производство бутадиена дегидрированием -бутана и -бутенов

Производство бутадиена дегидрированием бутиленов

Производство бутадиена дегидрированием м-бутана

Равновесие реакций одностадийного дегидрирования бутана в бутадиен и изопентана в изопрен

Разделение смесей углеводородов С4, получающихся в производстве бутадиена из к-бутаиа двухступенчатым дегидрированием

Разделение смесей углеводородов С4, получающихся в производстве бутадиена из н-бутана двухступенчатым дегидрированием

Разделение углеводородов С4 при получении бутадиена ступенчатым дегидрированием к-бутана

Синтез бутадиена по Лебедеву. Дегидрирование олефинов Дегидратация 1,4-бутандиола. По реакции Принса Химические свойства 1,3-диенов

Синтез бутадиена-1,3 по способу С. В. Лебедева и дегидрированием н-бутана синтез изопрена из изопентана

Схема выделения и очистки бутадиена после одностадийного дегидрирования.бутана

Схема дегидрирования бутенов в бутадиен

Схема одностадийного дегидрирования бутана в бутадиен



© 2025 chem21.info Реклама на сайте