Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность капиллярных

    Зависимость селективности капиллярно-пористой стеклянной мембраны (стек-J0 А) от продолжительности испытания [толщина стенки капилляра 15 мкм, [c.75]

    Зависимость селективности капиллярно-пористой стеклянной мембраны от давления для растворов различных солей  [c.181]

    Было показано, что селективность насадочных колонок значительно выше, чем селективность капиллярных, поэтому при достижении одинаковой эффективности разделения потребуется насадочная колонка гораздо меньшей длины, чем капиллярная. [c.131]


    Селективность капиллярно-пористых стеклянных мембран монотонно возрастает с увеличением движущей силы процесса [c.77]

    Разработка хроматографических методов анализа систем, включающих близкокипящие изомерные соединения, до настоящего времени сопряжена со значительными трудностями. Раздельное элюирование изомерных соединений может быть обеспечено подбором неподвижной фазы соответствующей селективности и использованием высокоэффективной колонки (в частности, капиллярной). Оба способа не являются взаимоисключающими, при этом надо учитывать, что селективность капиллярной колонки вследствие большого объема, занимаемого газом, ниже селективности насадочной колонки с той же неподвижной фазой. [c.30]

    Современные представления, лежащие в основе капиллярно-фильтрационной модели механизма полупроницаемости (см. стр. 203), позволяют сделать вывод о возможности получения пористых селективных мембран для обратного осмоса и ультрафильтрации практически из [c.47]

    Исходя из капиллярно-фильтрационной модели механизма полу-проницаемости (см. стр. 201), можно ожидать появления селективных свойств у лиофильного пористого материала со сквозными капиллярами при уменьшении его пор до размеров, не превышающих удвоенной толщины слоя связанной жидкости. [c.75]

    Зависимость селективности и проницаемости капиллярно-пористой стеклянной мембраны (стекло В) от давления (толщина стенки капилляра 32 мкм). [c.75]

    Непрерывное формование трубчатой полупроницаемой мембраны можно производить литьем формовочного раствора в осадительную ванну (рис. 111-20). Формовочный раствор выдавливается из кольцевой фильеры 1, наружный срез которой погружен в осаждающую жидкость. Газ (воздух) в камеру подсушки 2 подается по трубке (шаблону) 4. Уровень осаждающей жидкости (воды) в камере подсушки регулируется давлением подаваемого газа, который затем вместе с парами растворителя и частью осаждающей жидкости удаляется по трубке 5, проходящей через центр фильеры. Полученная трубчатая мембрана 3 обрезается на необходимую длину и может быть установлена в каналах пористого каркаса или соединена в блок. Управление процессом образования селективного слоя при этом способе формования достаточно сложное, так как регулирование времени подсушки производится изменением давления газа, что одновременно изменяет и скорость испарения растворителя, а также может привести к деформации трубчатой мембраны. Промышленное применение этого способа, видимо, возможно только при изготовлении капиллярных трубчатых мембран (до 3— 5 мм), используемых без каркаса при небольших давлениях. [c.129]


    На капиллярно-пористых стеклянных мембранах при разделении растворов электролитов с увеличением температуры происходит непрерывное возрастание проницаемости и селективности (рис. -И). Воз- [c.186]

    Влияние температуры раствора на селективность и проницаемость капиллярно-пористых стеклянных мембран  [c.186]

    Предложено несколько моделей селективной проницаемости мембран, которые ранее рассмотрены в работе [1, с. 83]. Там же проведено сопоставление этих моделей и дана оценка их соответствия экспериментальному материалу. Показано, что опытные данные по селективности и проницаемости мембран и влияние на эти характеристики внешних факторов наиболее полно объясняются капиллярно-фильтрационной моделью механизма полупроницаемости, которая за последние годы получила дальнейшее развитие и экспериментальное подтверждение. Из этой модели следует, что очень большое влияние на процесс разделения растворов неорганических и органических веществ оказывает поверхностный слой жидкости. [c.200]

    Капиллярно-фильтрационная модель механизма селективной проницаемости позволяет объяснить влияние внешних факторов на процесс разделения электролитов и водных растворов органических веществ и получить некоторые расчетные зависимости для определения основных характеристик процесса. Так, учет влияния концентрации электролита в исходном растворе на эффективность разделения обратным осмосом может быть проведен на основе представлений об определяющем влиянии гидратирующей способности ионов [116, 158, 163]. Согласно этим представлениям, чем выше гидратирующая способность ионов электролита, тем больше и прочнее гидратная оболочка ионов, что, в свою очередь, затрудняет их переход через поры мембраны. Поэтому в разбавленных растворах, когда сила связи ион — вода меняется незначительно, селективность остается практически постоянной (область И на рис. IV-18,б). С увеличением концентрации электролита эта связь ослабевает и селективность снижается. [c.204]

    Обнаруженный факт уменьшения селективности при больших разведениях можно объяснить с позиций капиллярно-фильтрационной модели механизма селективной проницаемости. [c.210]

    Проникновение их возможно благодаря активированной и неактивированной диффузии, капиллярной конденсации, осмотическим и электроосмотическим явлениям, селективной проницаемости различных ионизированных частиц [6]. [c.22]

    В гл. I рассматривался вариант газовой хроматографии, в основе которого лежит селективная адсорбция компонентов разделяемой смеси твердой неподвижной фазой — адсорбентом. В распределительной газовой хроматографии решающим фактором разделения является селективная абсорбция компонентов смеси неподвижной жидкой фазой — абсорбентом. Для локализации неподвижной >йид-кой фазы и придания ей достаточной поверхности ее наносят на зерна твердого носителя, которым заполняется колонка (насадоч-ная колонка), или же на внутренние стенки тонких капилляров (капиллярная колонка). [c.170]

    Таким образом, в капиллярной хроматографии критерий селективности К с может оказаться в 10 раз меньше, чем в обычной газожидкостной, что в соответствии с (П1.74) должно в 10 раз уменьшить критерий К . Однако когда коэффициент распределения К >> к/я1 и когда величиной х в (1П.89) можно пренебречь, К с вообще не зависит от следовательно, [c.75]

    Селективность газоадсорбционного варианта хроматографии обычно гораздо выше, чем газожидкостного. Однако реализации этой высокой селективности ГАХ мешала низкая эффективность газоадсорбционных колонн. По мере увеличения однородности поверхности адсорбентов и усовершенствования способов ее модифицирования, а также методов синтеза новых, более однородных адсорбентов с конца 50-х годов началось развитие газоадсорбционного варианта хроматографии, приведшее к созданию высокоэффективных капиллярных колонн, наполненных небольшими зернами адсорбентов с поверхностью, близкой к однородной. В этом курсе будет рассмотрена газоадсорбционная хроматография не только как высокоселективный и достаточно эффективный метод анализа сложных смесей и как удобный метод изучения адсорбции, но и как важный способ изучения межмолекулярных взаимодействий, а также как экспериментальная основа нового метода определения некоторых параметров структуры молекул. [c.9]

    Если Я = 1,5, происходит полное разделение веществ. Из выражения 7.15 видно, что чем больше разность времен удерживания двух веществ, чем выше селективность и чем больше ширина пиков, тем хуже эффективность колонки. На рис. 7.4 показана зависимость степени разделения смеси двух веществ от эффективности колонки и селективности НФ. Такнм образом, хорошего разделения можно добиться улучшением как эффективности, так и селективности колонки. Однако при анализе сложной смеси веществ улучшение селективности колонки по отнощению к одним веществам может привести к наложению пиков других веществ. В настоящее время лучшего разделения добиваются с помощью более эффективных, в частности капиллярных, колонок. [c.336]


    В табл. 4 приведены сравнительные данные по определению критерия разделения и времени анализа нормальных алканов на капиллярной колонке длиной 143 м с полиэтиленгликолем (Штруппе, 1966) при различных рабочих условиях. Значения критериев разделения 22 и 3 (критерий разделения, отнесенный к времени), соответствующие программированию давления, больше таких же величин, полученных в изотермических условиях при постоянной скорости потока и в условиях программирования температуры. Это доказывает целесообразность применения программирования давления газа-посителя. Правда, программирование газа-носителя ограничено техническими возможностями аппаратуры. Едва ли возможно изменять давление на входе в колонку больше 10 ат. Так как между временем удерживания и обратной величиной средней скорости газа-носителя существует лишь линейная, а не логарифмическая зависимость, программирование газа-носителя меньше влияет на вид хроматограммы. Для получения постоянной разницы в величинах удерживания для членов гомологического ряда необходимо экспоненциальное увеличение давления. Однако, когда задача разделения требует применения полярной и специфически селективной неподвижной фазы, не выдерживающей высокой рабочей температуры, или анализируемая проба термически не стабильна, анализ с программированием газа-носителя более предпочтителен. [c.352]

    Достижение селективности в капиллярной ГХ [c.9]

    Для того чтобы правильно использовать капиллярные колонки, необходимо прежде всего разобраться в терминологии. По-видимому, самыми важными понятиями являются емкость колонки но пробе, разрешение, эффективность и селективность. Теория капиллярной газовой хроматографии и ее практические следствия рассмотрены в гл. 1. При выборе подходящей колонки для проведения анализа необходимо понимать, что означают эти характеристики и как они взаимосвязаны. [c.16]

    Селективность капиллярно-пористых стеклянных мембран монотонно возрастает с увеличением движущей силы прощеоса (рис. IV-8, стр. 181). Зависимость q> = f(AP) в пределах исследованных значений ДР близка к линейной и описывается уравнением вида [c.182]

    Зависимость селективности капиллярно-пористой стеклянной мембраны от температуры (данные Чураева Н. В. и сотр.)  [c.187]

    Как видно из рис. 1.9, капиллярно-осмотическое торможение приводит к тому, что продолжение линейных участков зависимостей v AP) не проходит через нача.по координат и отсекает на оси давления отрезок, численно равный так. называемому динамическому осмотическому давлению Ал. Для полупроницаемых мембран, когда в порах находится только растворитель (С = 0), Ап = Апо = ЯТАС. В случае обратноосмотических мембран, в поры которых растворенное вещество проникает (СфО), Ал = аАпо. В первом приближении а=ф <1, где ф=1— — (С//Со) — коэффициент селективности мембраны. Давление Ап является динамическим в том смысле, что оно возникает только при течении раствора. В отсутствие течения, разность концентраций снимается диффузией растворенного вещества через поры мембраны. [c.26]

    Если окажется, что оптимальным, с точки зрения селективности, является внутридиффузионный режим, то ход решения в общем не изменяется. При другой, не капиллярной Рмс. У.5. График для модели пористости зерна следует заменить определения оптныаль-уравнения (У.8) и (У.9) соответствующими, = Г ой даф что, впрочем, пока не разработано. Слинько фузии по уравнение [c.193]

    Для быстрого анализа газообразных и жидких продуктов могут быть успешно использованы насадочные хроматографические колонки малого диаметра (1 мм), сочетающие достоинства капиллярных и обычных насадочных колонок [76]. Эти колонки, в отличие от капиллярных, обладают высокой воспроизводимостью. Увеличение сорбционной поверхности, а также уменьшение мертвого объема колонки позволяет повысить коэффициент селективности без снижения ВЭТТ. Преимущества микронабивных колонок по сравнению с обычными насадочными состоят в том, что уменьшение внутреннего диаметра колонки позволяет резко сократить время анализа, уменьшить влияние стеночного эффекта на -размытие пиков, использовать высокие скорости газа-носителя без снижения эффективности. [c.119]

    В то же время капиллярная хроматография обладает рядом недостатков. К наиболее значительным относятся следующие малые значения коэффициента селективности для слабо сорбирующихся веществ могут свести на нет преимущества высокой эффективности малые значения коэффициентов Генри ограничивают возможности обогащения капиллярная хроматография требует решения более трудных технических задач, чем газо-жидкостная хроматография с насадочными колонками, особенно возникающих при дозировке и детектировании. [c.203]

    Влияние неидеальности газа-носителя при высоких давлениях изучалось Голдапом и др., которые показали, что при давлениях выше 10 атм замена одного газа другим приводит к изменению селективности колонки. Приведенные на рис. 20 хроматограммы смеси углеводородов иллюстрируют этот эффект. Они получены на одной и той же капиллярной колонке (длина 270 м, диаметр 0,15 мм) с различными газами-носителями при давлении на входе свыше [c.57]

    Отскуда следует, что разрешение колонны падает при уменьшении термодинамических факторов — селек ивности и емкости колонны (при наименьших значениях а=1 и к-=0, к = 0), г также при уменьшении числа теоретических тарелок, т. е. при уменьшении эффективности колонны. Для достижения / =1 или =1,5 (касание или полное раздвижение пиков к и 1 на рис. 7.6) при малой селективности адсорбента по отношению к компонентам к и 1, например при а= 1,0 1, требуется резкое сужение пиков и уменьшение высоты, эквивалентной теоретической тарелке, Н=ЦМ (где — длина колонны). В газовой хроматографии на наполненных адсорбентом колоннах при низкой селективности а величина Н не должна превышать 0,4 мм. Это достигается применением капиллярных колонн внутренним диаметром около 1 мм и меньше, заполненных узкой фракцией гранул адсорбента размером около 0,1 мм (см. рис. 1.7).  [c.140]

    Если снять хроматограммы одной и той же пробы на детекторе, показания которого пропорциональны массе вещества, и на детекторе, обладающем селективной чувствительностью к отдельным веществам, то можно определить специфические поправочные коэффициенты этих двух детекторов для отдельных хроматографических пиков. Сопоставление этих факторов с табличными значениями позволяет сделать вывод об имеющихся функциональных группах и гетероатомах. Для капиллярных колонок может быть с успехом использована комбинация пламенно-ионизационного детектора, чувствительность которого определяется числом атомов углерода, содержащихся в молекуле, с электронозахватным детектором (ср. Оке, Хартман и Димик, 1964). В сочетании с капиллярными колонками в качестве специфических детекторов применяли фосфорный и галогенный пламенно-ионизационные детекторы (Кармен, 1964) и кулонометрический детектор, реагирующий на фосфор, серу и галогены (Коулсон и Каванаг, 1959 ср. также Пирингер, Татару и Паскалау, 1964). [c.356]

    Для качественного анализа, проводимого на капиллярных колонках, наиболее пригодна комбинация капиллярной хроматографии с масс-спектро-метрией. В качестве детектора используют масс-спектрометр, фиксирующий массы молекул непрерывно поступающего вещества. В соответствии с аналитической проблемой селективность этого детектора можно изменить при помощи выбора определенного массового числа (Хеннеберг и Шомбург, [c.356]

    Наряду с КЗЭ, при котором удается осуществить разделение только за счет разницы в подвижности, и который в настоящее время представляет собой наиболее распространенный метод, выделяют также капиллярный гель электрофорез (КГЭ) с капилляром, заполненным гелем. При этом на электрофоретическую миграцию молекул оказывает влияние матрица геля, и поэтому достигается селективное разделение молекул по размерам. Незаряженные молекулы можно разделять с помощью мицеллярной электрокинетической хроматографии (МЭКХ). В данном случае к буферу добавляется детергент, и нейтральные молекулы распределяются между буфером и мицеллами в соответствии с их гидрофобностью. Разделение основано на подвижности мицелл, заряженных в большинстве случаев отрицательно. Поскольку в основе разделения лежит процесс распределения, можно с полным основанием говорить о хроматографическом методе. При изоэлектрической фокусировке (ИЭФ) происходит разделение в градиенте pH, формируемом добавлением амфолита к буферу в электрическом поле. Небольшое распространение получила пока электрохроматография (ЭХ), при которой применяется стационарная среда ВЭЖХ, а течение эдюента и перенос пробы происходит только за счет электроосмотического потока. В качестве самой старой капиллярной техники следует упомянуть изотахофорез (ИТФ), который в настоящее время вновь приобрел значение для концентрирования проб в КЭ. [c.7]

    Обнаружение и последующее удаление серусодержащих компонентов из нефтяного сырья играет большую роль в процессах нефтепереработки. Это вызвано тем, что серусодержащие компоненты отравляют катализаторы, используемые в процессах нефтепереработки. Поэтому обнаружение и количественное онределение соединений серы чрезвычайно важно. Селективное детектирование следовых количеств соединений серы в сложных углеводородных смесях, какой является бензино-лигроиновая фракция нефти, может быть достигнуто нутем иснользования ГХ с пламенно-фотометрическим детектированием. Разделение может быть оптимизировано, если использовать высокоэффективные капиллярные колонки, разработанные специально для анализа бензино-лигроиновой фракции (см. предыдущий раздел). В табл. 8-6 приведены условия онределения серусодержащих соединений в нефтяных фракциях. [c.111]


Смотреть страницы где упоминается термин Селективность капиллярных: [c.174]    [c.157]    [c.75]    [c.48]    [c.75]    [c.118]    [c.175]    [c.626]    [c.56]    [c.4]    [c.9]    [c.13]    [c.74]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.149 , c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Капиллярная

Капиллярно-фильтрационная модель селективной проницаемости

Капиллярность

Селективность и эффективность капиллярных адсорбционных колонн



© 2025 chem21.info Реклама на сайте