Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефекты заряженные

    Атомные ядра включают N нейтронов и Z протонов. Параметры и свойства атомных ядер влияют на протекание химических процессов, так как масса, заряд, энергия связи, устойчивость и ядерный спин ядра в значительной мере определяют свойства атома в целом. Отметим прежде всего, что с помощью масс-спектроскопических методов можно обнаружить разность ме кду массой ядра и массой, найденной простым суммированием масс составляющих его нуклонов, — так называемый дефект массы Ат. Энергетический эквивалент дефекта массы представляет собой энергию связи нуклонов в ядре. Ат = = 1,0078 Z+1,0087 N —т. Для ядра гелия Ат = 0,03 а. е. м., что соответствует 27,9 МэВ. Энергия связи ядра химического элемента приблизительно линейно зависит от массового числа A=--Z- -N. Если построить график зависимости средней энергии связи па один нуклон от массового числа, наблюдается максимум при средних значениях массового числа. Таким образом, ядра со средним массовым числом более устойчивы, чем тяжелые или легкие. Следует отметить, что тяжелые ядра богаче нейтронами, чем легкие. При Z>84 уже не существует стабильных ядер. Различают следующие виды ядер изотопы (равные Z, неравные N), изотоны (неравные Z, равные N), изобары (неравные Z, неравные N, равные А), изомеры (равные Z и N, однако внутренняя энергия неодинакова). Для нечетных А имеется лишь одно стабильное ядро, а для четных — несколько стабильных ядер изобаров (правило изобар Маттауха). [c.34]


    В общем случае температурная зависимость подвижности носителей заряда в полупроводниках определяется тремя механизмами рассеяния носителей рассеянием на тепловых колебаниях атомов решетки, на ионизованных примесях и на дефектах. [c.130]

    В реальных кристаллах окислов всегда имеются дефекты, связанные с нарушением периодической структуры решетки. В связи с этим в кристалле Ме ,0 имеется некоторое количество анионных вакансий (отсутствуют ионы О- ). Для компенсации заряда часть катионов находится в степени окисления более низкой, чем это соответствует Ме.цО,,. Напрнмер, и кристалле У Оз с некоторым недостатком кис лорода имеется некоторое количество ионов способных отдавать электроны [1.3]. [c.6]

    Процессы, вызывающие токи ТСД, по-видимому, были связаны с перемещением катионов на вакантные места. Так, прогревание образца до 620 К и последующее сравнительно медленное охлаждение привели к возрастанию максимумов (рис. 16.5, кривые 2, 3), что можно объяснить появлением дополнительных дефектов в кристаллической решетке. Эти процессы могут быть связаны со значительным смещением зарядов и их последующим накоплением на неоднородностях по объему образца (объемная поляризация) или со смещением зарядов в пределах отдельных полостей. В пользу первой точки зрения говорит близость энергии активации процесса В (кривая /, рис. 16.5) и энергии активации электропроводности, а также большая величина времен релаксации (тысячи секунд), что на несколько порядков превосходит времена релаксации ионных процессов, определяемых из диэлектрических измерений при одинаковых температурах [694]. [c.260]

    Химическая адсорбция происходит в тех случаях, когда свободный электрон или дырка реагирует на поверхности с молекулой из газовой фазы (такую адсорбцию называют соответственно адсорбцией акцепторного или донорного типа). Эти носители зарядов возникают при термическом возбуждении дефектов и отталкиваются от поверхнос- [c.28]

    Знак плюс в верхнем индексе означает положительный, а знак минус отрицательный заряд дефекта относительна решетки, предполагаемой нейтральной. При несовпадении зарядов ионов 1 и 2 возможно появление зарядов и у дефектов 5 и 6. [c.35]

    При системном анализе процессы измельчения- смешения сыпучих материалов [4] определяются как процессы взаимодействия ансамбля измельчаемых и смешиваемых частиц различного сорта и различных размеров с несущей средой и между собой при наличии внешних воздействий на двух уровнях иерархии. На локальном (микро) уровне действуют внешние поверхностные и массовые силы и силы взаимодействия между несущей фазой и частицами (силы Архимеда, Стокса, Жуковского и Магнуса). При определенных свойствах обрабатываемых веществ и несущей среды возможны дополнительные электромагнитные силы. В результате этого в системе происходит перенос массы, импульса, энергии и заряда. Внешняя механическая энергия или энергия другого вида, превращенная в нее внутри системы, расходуется на работу против сил молекулярного сцепления и электростатического взаимодействия, преодоление сил взаимодействия внутри частицы, на накопление упругих деформаций, переходящих в пластические и во внутреннюю энергию. Частично энергия упругих деформаций создает в системе дефекты, микронапряжения и микротрещины. [c.113]


    В случае полупроводников свободные валентности (свободные электроны и электронные дырки) появляются вследств 1е неполной координированности атомов кристаллической решетки. Обычно зто связано с различными дефектами кристалла полупроводника. Например, узел кристалла, в котором отсутствует катион, ведет себя как отрицательный заряд, отталкивая электроны в ближайших узлах. В результате эти электроны могут быть вытеснены из валентной зоны в зону проводимости. [c.241]

    Нестехиометрия четвертого типа V обусловлена вакансиями в катионной подрешетке и повышением положительного заряда соседнего катиона. Такой дефект в решетке равносилен положительно заряженной дырке. Оксид железа FeO (вюстит) имеет недостаток ионов железа, причем на каждую вакансию Fe + приходится два иона Fe +. Аналогичная нестехиометрия характерна для СпгО, NiO, СоО, FeS и других кристаллических веществ. [c.176]

    Механизм действия многочисленных полупроводниковых катализаторов, как показал Ф. Ф. Волькенштейн, существенно зависит от положения уровня Ферми (т.е. усредненного значения химического потенциала электрона в полупроводнике). Частицы на поверхности катализатора связаны с ней одноэлектронной или более прочной-—двухэлектронной связью. Чем выше уровень Ферми, тем больше доля частиц, несущих отрицательный заряд, и тем меньше доля частиц, связанных с поверхностью донорной связью, т. е. положительно заряженных. Число нейтральных частиц при изменении уровня Ферми проходит через максимум. Таким образом электронные свойства полупроводника определяют возможные состояния частиц на его поверхности и, следовательно, и направление химических процессов между ними. Влияние дефектов или примесей также зависит от того, как отзывается их появление иа положении уровня Ферми. [c.322]

    В результате перехода электронов в зону проводимости в валентной зоне образуются положительные дырки ( дефекты электронов ), которые также могут изменять энергетический уровень и обеспечивать перенос электрического заряда. [c.142]

    Полупроводники р-типа характеризуются недостатком металла (например, NiO), вследствие чего возникают положительные дырки, обладающие высокой подвижностью. Соответственно имеется и эквивалентная концентрация отрицательных ионных дефектов — диссоциированных акцепторов, несущих избыточный заряд. [c.173]

    Дефекты по Френкелю — не единственный тип дефектов в ионных кристаллах. В. Шоттки (1935), показал, что в реальном кристалле могут отсутствовать межузельные ионы и в то же время часть узлов решетки оказывается незанятой. Так как в целом должен соблюдаться баланс электрических зарядов, то каждой катионной вакансии соответствует анионная вакансия. Комбинацию катионной и анионной вакансии в ионном кристалле называют дефектом по Шоттки. Процесс протекания тока в таком кристалле можно рассматривать как последовательное осуществление перехода ионов кристаллической решетки в соседнюю вакансию. Подвижности катионных и анионных вакансий в общем случае различны, что и определяет преимущественную катионную или анионную проводимость. Типичный пример соединений с дефектами по Шоттки — галогениды щелочных металлов. [c.96]

    В ионных кристаллах, в которых должна соблюдаться электронейтральность, образование дефектов связано с перераспределением зарядов. Так, появление вакансии катиона сопровождается возникновением вакансии аниона (рис. 1.83а), такой тип дефекта в ионном кристалле называ,ется дефектом по Шоттки. Внедрение иона в междоузлие сопровождается появлением иа его прежнем месте вакансии, которую можно рассматри- [c.162]

    Картина усложняется при переходе от металлического кристалла к ионному. Здесь должна соблюдаться электронейтральность, поэтому образование дефектов связано с перераспределением зарядов. Так, появление вакансии катиона сопровождается возникновением вакансии аниона (рис. 145, а) такой тип дефекта в ионном кристалле называется дефектом Шоттки. Внедрение иона в междоузлие сопровождается появлением на его прежнем месте вакансии, которую можно рассматривать как центр заряда противоположного знака (рис. 145, б) здесь мы имеем дефект Френкеля. Указанные названия даны в честь [c.262]

    Дефектность кристаллической решетки алита. Внедрение примесных ионов в кристаллическую решетку минерала приводит к созданию локальных дефектов, изменяющих ее энергию. Твердые растворы трехкальциевого силиката обладают значительным количеством точечных дефектов, таких, как вакансии, свободные носители заряда (электроны и дырки), центры термолюминесценции, парамагнитные центры, полученные при облучении образцов. Для определения концентрации точечных дефектов в алите промышленных клинкеров необходимо либо выделить минерал из клинкера, либо учесть влияние дефектности строения остальных фаз, что в настоящее время чрезвычайно затруднительно. [c.235]


    Перенос заряда в кристалле происходит за счет дефектов кристаллической решетки, когда вакансии занимаются свободными соседними ионами. Вакансии идеально соответствуют определенному иону в отношении размера, формы и распределения заряда, поэтому занять их могут только определенные подвижные ионы. Все другие ионы не в состоянии перемещаться в кристалле и не вносят вклад в процесс переноса заряда. [c.22]

    Чем меньше работа образования зародыша, тем вероятнее его возникновение. С этим связано преимущественное появление устойчивых зародышей на имеющихся в растворе посторонних частицах, пылинках, особенно имеющих электростатический заряд, на поверхностях твердых тел (стенках кристаллизатора) и их дефектах. [c.240]

    В ионной решетке внедрившиеся атомы становятся донорами (металлы) или акцепторами (неметаллы) электронов. Перемещение электронов приводит к появлению в структуре кристалла точек с избыточными отрицательными и положительными зарядами. Атомы с избыточным положительным зарядом, т. е. с дефицитом электронов, называют дырками. В целом кристалл сохраняет электронейтральность, несмотря на то, что дефекты его имеют эффективный заряд, отличающийся от нулевого, за который принимают заряд частиц идеального кристалла. [c.341]

    Механизм внедрения кадмия в заряженной форме, как и раньше, определяется преобладающими в чистом основном соединении собственными дефектами, заряд которых противоположен по знаку заряду центров кадмия. При этом он изменяется от механизма контролируемых атомных дефектов в областях III, IV, V (рис. XVI.И, б), соответствующих областям II и III рис. XVI.11, а, до механизма контролируемых электронных дефектов в областях I и II рис. XVI.11, б (соответствующих области I рис. XVI.11, а). Однако для неионизированного d g дело обстоит иначе ассоциация dAg и электронов способствует внедрению кадмия по механизму контролируемых электронных дефектов. [c.457]

    Это последнее уравнение, согласно которому рост окисной пленки во времени происходит по параболическому закону, является типичным для окисления большинства металлов, за исключением щелочных и щелочноземельных металлов [54, 55]. Более четкая модель процесса окисления, включающая перемещение О и М ионов вместе с электронами, а также учитывающая дефекты решетки, была сформулирована Вагнером [56] (см. также [57]). Следует также отметить, что было сделано много попыток связать сложную константу скорости в уравнении (XVII.7.8) со свойствами различных компонентов системы [58]. Эта задача усложняется влиянием заряда, которое проявляется в ионных средах. В случае очень тонких окисных пленок между поверхностями раздела будет существовать электростатическое взаимодействие [59]. Качественно рассмотренные модели, по-видимому, достаточно хорошо согласуются с экспериментом в то же время многие черты процесс окисления продолжают оставаться невыясненными.  [c.552]

    Твердые электроды. В лабораторной практике широко применяют электроды с гомогенными мембранами, изображенные на рис. 2.11, чувствительные к ионам Р , С1" и Си +. В электродных системах с твердыми мембранами в качестве чувствительного элемента используют соединения, обладающие ионной, электронной или смешанной электронно-ионной проводимостью при комнатной температуре. Обычно в таких соединениях (ЬаРз, Ag l—АдзЗ, Сц2-л 5), число которых крайне невелико, в процессе переноса заряда участвуют только один из ионов кристаллической решетки, имеющий, как правило, наименьший ионный радиус и наименьший заряд. В этом случае униполярная проводимость обеспечивает высокую избирательность электрода. Перенос заряда в таких соединениях происходит за счет дефектов [c.120]

    В. Теплопроводность проводников. В решетках металлов валентные электроны способны более или менее свободт) циркулировать между атомами, перепося таким образом электрический заряд, т. е. создавая электрическую проводимость, При очень низких температурах средняя длина свободного пробега электронов ограничена главным образом примесями и дефектами решетки. С ростом температу- [c.191]

    Помимо этого вида релаксационной поляризации акад. А. Ф. Иоффе была установлена объемно-зарядовая поляризация (рис. 23, г), тесно связанная с электрической проводимостью. Впоследствии этим термином стали называть ряд явлений, сходство между которыми состоит в том, что поляризация в диэлектриках происходит за счет образования объемных зарядов. Сущность объемно-зарядовой поляризации заключается в том, что при движении свободных носителей заряда через диэлектрик они могут не дойти до заряженных поверхностей, к которым движутся, или подойти к ним, но не разрядиться. Тогда в диэлектрике остаются объемные заряды положительные у отрицательной поверхности и отрицательные у положительной. Эти заряды смещены не на микрорасстояния, как при обычной поляризации, а на макрорасстояния. Причина указанных явлений еще полностью не ясна. Считается, что продвижению свободных зарядов могут мешать дефекты кристаллических решеток, которые способны в некоторых случаях захватывать электроны или ионы. Иногда ионы, дошедшие до электродов, не успевают полностью разрядиться за то время, в течение которого подходят новые ионы. [c.131]

    На величину поверхностного заряда существенно влияют и другие дефекты на поверхности или внутри кристаллической peuJeткн. Причем заряд, приобретаемый за счет вакантных мест, будет отрицательным, если вакансии катионов будут в избытке и положительным при избытке вакансий анионов. Вклад в величину поверхностного заряда зависит от плотности дефектов. [c.53]

    Какого типа дефект (катионный или анионный) возникнет ири введении в кристалл Ag l следовых количеств d b (При ответе учтите различие зарядов ионов Ag и d +. ) [c.107]

    Исследованы при комнатной температуре и температуре жидкого азота эффект Холла и электросопротивление пироуглерода с температурой осаждения 2100°С, содержащего различное количество бора. Полученные данные обработаны с использованием электронно-энергетической модели Херинга—Уоллеса в предположении применимости кинетического уравнения Больцмана. Сделан вывод о существовании двух основных механизмов рассеяния носителей заряда в исследованных материалах — на ионизированных атомах бора и на собственных дефектах структуры. Оценены соответствующие им длины свободного пробега. Предложена формула, описывающая зависимость электросопротивления пироуглерода от содержания в нем растворенного в решетке бора. Ил. 1. Табл. 2. Список лит. 3 назв. [c.267]

    В работах Гримлея, Хонига на основе современных представлений о наличии дефектов в построении решетки реальных ионных кристаллов (как вакансий в узлах решетки, так и внедрения в междоузлия по Шоттки и Я. И. Френкелю) разработана теория и дано экспериментальное подтверждение диффузного распределения избыточных зарядов одного знака в поверхностном слое твердого тела (см. также стр. 51). [c.36]

    В кристаллах с нестехиометрией третьего типа /// анионы X находятся в междоузлиях, а для обеспечения электронейтральности кристалла катион теряет один электрон и переходит в состояние Возникающий в результате этого нескомпенси-рованный положительный заряд называют дыркой (электронный дефект). Примером вещества с нестехиометрией этого типа может служить диоксид урана. [c.176]

    Внедрение различных ионов, модифицирующих структуру минерала, приводит к образованию дополнительных дефектов, концентрация которых определяется главным образом количеством, химической природой примесных ионов и способом образования твердого раствора. Как установлено, концентрация дислокаций в этом случае достигает 4,Ы0 м . Наибольшее количество дислокаций определено в образцах, содержащих TiOa, МпгОз, SO3, РегОз, СоО, NiO, ВаО, НагО и их комбинации. Наиболее эффективными являются добавки Ti02 и SO3, которые непосредственно деформируют анионную подрешетку структуры, а также железосодержащие добавки, приводящие к образованию значительного количества мелких ямок травления. Концентрация свободных носителей заряда в образцах изменяется в более широком интервале (в 10" раз). К числу наиболее дефектных следует отнести в первую очередь кристаллы, содержащие ионы Na+, Mg +, Mn +, Ва +, Ti"+, d2+. Содержание наведенных парамагнитных центров, локализованных на кислородных, кальциевых и кремниевых вакансиях, изменяется в узком концентрационном интервале (в 10 раз) при высокой их концентрации. [c.239]


Смотреть страницы где упоминается термин Дефекты заряженные: [c.220]    [c.359]    [c.220]    [c.359]    [c.220]    [c.6]    [c.153]    [c.53]    [c.158]    [c.9]    [c.253]    [c.254]    [c.43]    [c.106]    [c.235]    [c.431]   
Химия несовершенных кристаллов (1969) -- [ c.9 ]




ПОИСК







© 2025 chem21.info Реклама на сайте