Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация релаксационная

    В книге рассмотрены основные понятия электрохимии и современные методы исследования кинетики электродных процессов. Описаны классические и релаксационные методики изучения электродной поляризации. Представлены специальные и вспомогательные приборы, применяемые в электрохимических исследованиях. Уделено внимание особенностям лабораторного эксперимента. В задачах установлены закономерности фарадеевских реакций, электропроводности растворов, чисел переноса, э. д, с. элементов, электрокапиллярных явлений и строения двойного электрического слоя, диффузионной кинетики и полярографии, механизма образования на электродах новой фазы, пассивности и коррозии металлов. [c.2]


    Методы вольтамперометрии принято делить на классические и релаксационные. К классическим относятся методы исследования электрохимических процессов, имеющих малую скорость и протекающих при отсутствии концентрационной поляризации, так называемая электрохимическая кинетика. К релаксационным методам относятся методы исследования электродных процессов в течение короткого времени (10" —10 сек) после отклонения от равновесных условий, когда скорость реакции велика. В этом случае релаксацией называется выравнивание с помощью диффузии неравномерного распределе-нпя концентрации, которое возникло в результате резкого отклонения электрохимической системы от равновесного состояния. [c.164]

    Высокочастотное титрование — вариант бесконтактного кондуктометрического метода анализа, в котором анализируемый раствор подвергают действию электрического поля высокой частоты (порядка нескольких мегагерц). При повышении частоты внешнего электрического поля электропроводность растворов электролитов увеличивается (эффект Дебая — Фалькенгагена), поскольку уменьшается амплитуда колебания ионов в поле переменного тока, период колебания ионов становится соизмерим с временем релаксации ионной атмосферы (примерно 10 с для разбавленных растворов), тормозящий релаксационный эффект снимается. Поле высокой частоты деформирует молекулу, поляризуя ее (деформационная поляризация) и заставляет полярную молекулу определенным образом перемещаться (ориентационная поляризация). В результате таких поляризационных эффектов возникают кратковременные токи, изменяющие электропроводность, диэлектрические свойства и магнитную проницаемость растворов. Измеряемая в этих условиях полная электропроводность высокочастотной кондуктометрической ячейки X складывается из активной составляющей А/акт — ИСТИННОЙ ПрО-водимости раствора — и реактивной составляющей реакт — МНИ-мой электропроводности, зависящей от частоты и типа ячейки  [c.111]

    Для случая поляризации релаксационного типа явный вид величин е и е" дается уравнением Дебая и соотнощениями (7.115) и [c.174]

    Явление поляризации диэлектриков Диэлектрические потери Уравнение Дебая Релаксационный спектр ф Природа диэлектрических потерь ф Обработка экспериментальных данных ф Процессы электрической релаксации в полимерах [c.173]

    Релаксационным методом или по форме линии излучения измеряется время релаксации разницы населенностей рабочих уровней и осциллирующей магнитной поляризации при столкновениях атомов водорода с исследуемыми молекулами в газовой фазе. Соответствующие константы скорости процессов изменения сверхтонкого состояния атома водорода при его взаимодействии с молекулой М и потери атомом когерентности при этом взаимодействии Л, связаны с характеристическими временами релаксации [c.303]


    В настоящее время трудно определить влажность материала, начиная с которой величина этой поляризации соизмерима с другими видами поляризации. Проведенные в работе [669] исследования процессов релаксационной поляризации увлажненных кристаллов, отличающихся высокой растворимостью, дают основание полагать, что роль растворенных ионов в поляризации смеси сорбент — сорбат в области малых величин сорбции незначительна. Несмотря на сравнительно большую величину е, в работе [648] высказано предположение об отсутствии ионной поляризации, если образуется не менее трех слоев адсорбата. [c.249]

    Релаксационные процессы происходят в объеме образца. В пользу этого говорит следующий опыт. Для системы NaX — адсорбированный этилен — гелий наблюдалось возрастание высоты максимумов при увеличении в ходе поляризации времени выдержки охлажденного образца или понижении температуры. Для системы NaX — гелий этого при аналогичных условиях не наблюдалось [693]. Полученные результаты можно объяснить, считая, что теплопроводность системы NaX — этилен — гелий при низких температурах выше, чем для системы NaX — гелий. В этом случае образец с этиленом не успевал достаточно охладиться при поляризации и не все катионы [c.259]

    О -> оо, е" = ест. Значение е" -> О, как при оз О, так и при -> оо и проходит через максимум, равный е"макс = (4пЛ/ й) (1//о)о) при (О = шо (рис. VII. 4). Сдвинутая по фазе компонента г" так же характеризует энергетические потери, как и в случае релаксации дипольной поляризации. Резонансное поглощение для полимеров менее существенно, чем дипольные релаксационные потери. В случае резонансного поглощения области максимума б" и изменения е существенно уже, чем при релаксационных процессах. [c.239]

    I. Первая группа, связанная с поляризацией и диэлектрическими свойствами, позволяет, с использованием принципа ТВЭ, наиболее прямым образом прозондировать релаксационный спектр, т. е. попросту воспроизвести его, варьируя положение стрелки действия в чрезвычайно широких частотных и достаточно широких температурных пределах. [c.264]

    В меньшей мере пока используются оптические методы, основанные на исследовании вторичного излучения (люминесценции). Метод поляризованной люминесценции позволяет по частичной поляризации излучаемого полимером света изучать релаксационные переходы в блочных полимерах и конформации макромолекул в растворах. При использовании этого метода в исследуемый полимер вводятся люминесцирующие метки, которые улучшают регистрацию интенсивности свечения. Еще более широкие возможности для ис-сл.едования физико-химических свойств полимеров дает метод РТЛ.  [c.234]

    Уравнение (51.7) лежит в основе так называемых релаксационных методов изучения кинетики быстрых электрохимических реакций. Основная идея релаксационных методов заключается в том, что при сокращении времени t между подачей импульса, выводящего систему из равновесия, и регистрацией состояния системы уменьшается концентрационная поляризация. В пределе при i- 0, когда скорость диффузионной стадии стремится к бесконечности, концентрационная [c.260]

    Химически индуцированная динамическая поляризация ядер (ХПЯ)- Гомолиз связей с образованием свободных радикалов или радикальной пары в ряде случаев приводит к образованию намагниченности ядер, неравновесной по сравнению с больцмановской равновесной. Неравновесное распределение спинов ядер сохраняется в стабильных продуктах, образующихся из радикалов, и постепенно уменьшается в результате релаксационных процессов в системе спинов ядер. [c.279]

    Современная методика исследования поляризации в расплавленных солевых системах использует те же приемы, что и в водных электролитах. При этом также применяют и классические и релаксационные методы определения кинетических параметров электродных процессов. [c.321]

    Модель Дебая. Первое молекулярное описание релаксационной поляризации в диэлектриках было сделано Дебаем. Он постулировал, что дипольные молекулы в процессе их ориентации полем должны вращаться, совершая работу против сил трения, обусловленных соударениями. Это предположение позволило ему найти формулы (621) и вычислить время релаксации [6]  [c.358]

    Ориентационная модель. Следующая простая модель иллюстрирует метод описания релаксационной поляризации и поглощения, который несколько отличается от метода Дебая. [c.359]

    Na , К , Li" , (СГ, F ), и т.п. также должно играть значительную роль в энергетике релаксационных процессов, поскольку при этом возможны эффекты миграционной поляризации. [c.47]

    Процесс передачи ядром части энергии своему окружению посредством безызлучательного перехода называется спин-решеточной релаксацией. При действии на полимер внешнего магнитного поля ориентация спинов определяется поляризацией магнитных моментов ядер, тогда как тепловое движение атомов очень слабо влияет на порядок в расположении спинов. Если приложить магнитное поле к полимерной среде, а затем убрать его, то начинается спад магнитной поляризации ядер, обусловленный их тепловым движением. Явление спин-решеточной релаксации представляет собой спонтанный спад магнитной поляризации в отсутствие внешнего поля, обусловленный тепловым движением. Время спин-решеточной релаксации Т1 - это время, в течение которого разность между действительной заселенностью какого-либо уровня и его равновесным значением уменьшается в е раз. Спин-решеточная релаксация наблюдается наиболее отчетливо, когда частота тепловых колебаний сравнима с частотой ЯМР. Если измерения проводят на фиксированной частоте в достаточно широком интервале температур, то оказывается, что время спин-решеточной релаксации проходит через минимум, который для каждого релаксационного процесса в полимере наблюдается при определенной температуре. [c.254]


    Для статических режимов характерны изменения во времени токов поляризации, аналогичные явления ползучести и релаксации напряжения при механических воздействиях. Для нх исследования применяют метод термостимулированной деполяризации, аналогичный методу термостимулированного сокращения предварительно деформированного полимера. При воздействии переменного электрического поля в полимерах возникает несколько типов релаксационных процессов низкотемпературные р- и у-переход и а-переход в области стеклования. Первые два относятся к так называемым дипольно-групповым, где кинетическими единицами являются боковые привески (V-переходы) или мелкомасштабные участки (звенья) главной цепи (р-переход). Процесс а-релаксации в электрических полях называют дипольно-сегментальными, так как кинетическими единицами этого процесса являются сегменты. [c.249]

    Как уже сказано, поляризация люминесценции зависит от подвижности люминофора. Определяя Р, можно найти релаксационные характеристики макромолекулы. Теория поляризованной люминесценции полимеров развита в работах [181, 182]. Среднее квадратичное время вращательной релаксации в макромолекуле Тг можно определить по зависимости степени поляризации люминесценции для раствора полимера от вязкости растворителя [c.325]

    Процессы релаксационной поляризации [c.133]

    В зависимости от того, какие частицы и на какое расстояние смещаются, различают упругую и релаксационную поляризации. Упругая поляризация происходит в результате смещения упругосвязанных между собой частиц и может быть электронной и атомной (рис. 23). [c.130]

    Релаксационная поляризация возникает при смещении слабо связанных между собой дипольных молекул, электронов или ионов. Их появление обычно обусловлено дефектами кристаллической рещетки. Если такие слабо связанные частицы ориентируются во внещнем поле, то поляризация называется ориентационной (рис. 23, в). Слабосвязанные частицы в отличие от упруго-связанных соверщают не только тепловые колебания относительно некоторого равновесия в кристаллической рещетке, но и скачком изменяют свое равновесное положение под действием флуктуаций теплового движения. При этом они остаются в пределах некоторого объема, который представляет глубокую потенциальную яму. [c.131]

    Помимо этого вида релаксационной поляризации акад. А. Ф. Иоффе была установлена объемно-зарядовая поляризация (рис. 23, г), тесно связанная с электрической проводимостью. Впоследствии этим термином стали называть ряд явлений, сходство между которыми состоит в том, что поляризация в диэлектриках происходит за счет образования объемных зарядов. Сущность объемно-зарядовой поляризации заключается в том, что при движении свободных носителей заряда через диэлектрик они могут не дойти до заряженных поверхностей, к которым движутся, или подойти к ним, но не разрядиться. Тогда в диэлектрике остаются объемные заряды положительные у отрицательной поверхности и отрицательные у положительной. Эти заряды смещены не на микрорасстояния, как при обычной поляризации, а на макрорасстояния. Причина указанных явлений еще полностью не ясна. Считается, что продвижению свободных зарядов могут мешать дефекты кристаллических решеток, которые способны в некоторых случаях захватывать электроны или ионы. Иногда ионы, дошедшие до электродов, не успевают полностью разрядиться за то время, в течение которого подходят новые ионы. [c.131]

    Уравнения 1УП.4.21), 1УП.4.25), напротив, являются строгим следствием термодинамической теории релаксационных процессов. Параметры этих уравнений (времена релаксации, релаксационные силы) связаны как со строением жидких систем, свойствами составляющих их молекул 1концеттрации ассоциатов, дипольные момшты), так и с кинетическими характеристиками процессов перестройки ее структуры (константы скоростей молекулярных процессов). Приметеяие соотношений 1УП.4.21), (УП.4.25) при расшифровке диэлектрических спектров открывает широкие возможности для понимания молекулярных механизмов дипольной поляризации жидких систем /1,41/. ( [c.124]

    На рис. УП.4.3-УП.4.16 представлены кривые температурной зависимости величин с" исследованных жидких алканов. Из графиков видно, что для всех исследованнь х жидкостей величшш " с изменением температуры проходит через максимум или стремится к нему. Резко выраженная температурная зависимость диэлектрических потерь позволяет сделать вывод о существовании в исследуемых алканах дипольной поляризации, т.е. релаксационном Щерезонансном) характере поглошения электромагнитных волн в диапазоне СВЧ. [c.128]

    То, что происходит с диполями при термодеполяризации, как бы материализуется на уровне дипольных макромолекул в затухающем эффекте Керра в обоих случаях эффективное время макрорелаксации (исчезновение двулучепреломления в одном случае и поляризации в другом) зависит от вязкости — т. е., в случае термодеполяризации, чувствительно к переходу из одного релаксационного состояния в другое. [c.266]

    В интервале температур от 5 до 30° С наблюдается кинетический переход, который практически полностью исчезает после длительной сушки образцов в вакууме в течение 8—10 ч при 120— 140° С. С повышением частоты внешнего электрического пoляtg бmax смещается в сторону более высоких температур. Это позволяет связать данный кинетический переход с поляризацией молекул сорбированной полимером воды. Кинетический переход в интервале температур 40—100° С обусловлен размораживанием подвижности связанной воды и разрывом водородных связей. Он также исчезает после прогрева полимеров в вакууме при 120—140° С. В области высоких температур (230—250° С) реализуется релаксационный процесс, предшествующий сегментальной подвижности исследуемых полиарилатов (см. рис. 7.6, а, б). [c.188]

    Уравнение (29) лежит в основе так называемых релаксационных методов изучения кинетики быстрых электрохимических реакций. Основная идея релаксационных методов заключается в том, что при сокращении времени I между пода.чей импульса, выводящего систе-му из равновесия, и регистрацией состояния системы уменьшается кокГцентрационная поляризация. В пределе при 1 0, когда скорость днф"фузн онной стадии стремится к бесконечности, концентрационная поляризация стремится к нулю. Это дает возможность изучить кине-, тику быстрых электрод ных реакций. [c.22]

    Экспериментальную кривую 1 на рис. 152 можно, как это сделано для Т) алюминия (см. рис. 85), представить состоящей из пика (кривая 3) с фоном (кривая 2). Этот пик, обусловленный релаксационной ионной поляризацией в рутиле, удовлетворительно описывается формулой (623а). Если, пользуясь эксперимен- тальными данными, найти До и т , а потом построить теоретичес- кую кривую tg ф (Т), то ширина пика окажется несколько меньше ширины экспериментального максимума tg ф (Т). Следовательно, рассматриваемый процесс связан с распределением времени релаксации. [c.350]

    Поскольку электродные процессы включают ряд последоват. стадий, общая поляризация ДЯ определяется совокупностью поляризаций ДЯ , соответствующих отд. стадиям. Стадия, дающая наиб, вклад в ДЯ,— лимитирующая и определяет форму поляризац. характеристики. Т. о., чтобы управлять скоростью процесса, необходимо установить механизм и закономерности, к-рым подчиняется лимитирующая стадия. Для этого использ. в осн. три группы методов 1) регистрирующие зависимость г от Д в разл. условиях (напр., полярография) 2) релаксационные, основанные на анализе временных зависимостей г при заданном ДЯ или ДЯ при заданном г 3) совокупность аналит. методов, позволяющих регистрировать возникновение и изменение во времени концентраций промежуточных и конечных продуктов электролиза. [c.704]

    Проводя сравнение спектров, полученных с помощью INEPT, и спектров с полным ЯЭО, мы должны также учитывать релаксационные свойства ядер. Для эксперимента по ЯЭО важна величина Ту наблюдаемых ядер, в то время как в эксперименте INEPT на интенсивность конечного сигнала оказывает влияние только разность заселенностей ядра S, обычно протонов, и именно их Ту определяет частоту повторения прохождений. В результате частота прохождений в эксперименте INEPT не зависит от Ту ядра I, что на практике часто оказывается важнее, чем сам перенос поляризации. [c.198]

    Релаксационный механизм поляризации кварца в переменных электрических полях доказывается наличием максимумов тангенса угла диэлектрических потерь в температурно-частотных зависимостях tgд. Результаты изучения зависимостей (Т, ) искусственного кварца в диапазоне звуковых и радиочастот при температурах 20—550 °С находятся в согласии с вышеизложенными данными по электропроводности этих кристаллов в постоянном электрическом поле. А именно, с изменением скорости и температуры кристаллизации для кристаллов кварца с одним и тем Же типом электрически активных точечных дефектов (носителей заряда) изменяется и температурный интервал проявления релаксационного максимума на кривых tg6(T) при [изи = сопз1, что, как известно, означает изменение энергии активации релаксационного процесса. [c.133]


Смотреть страницы где упоминается термин Поляризация релаксационная : [c.393]    [c.201]    [c.208]    [c.266]    [c.212]    [c.88]    [c.107]    [c.136]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте