Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал выделения

    Существуют методы, дающие возможность измерять не только потенциал разложения для данного элемента в целом, но и соответствующие составляющие его для каждого из электродов в отдельности. Эти составляющие называют потенциалами выделения или потенциалами растворения (в зависимости от того, происходит ли яа данном электроде при электролизе выделение вещества или растворение материала электрода). Потенциал выделения (или растворения), очевидно, не может быть меньше потенциала этого электрода при равновесном процессе в гальваническом элементе. При отсутствии побочных процессов он может быть равен этому потенциалу, но в большинстве случаев он несколько больше его. Это явление называется перенапряжением на электродах. [c.451]


    Явления перенапряжения представляют не только теоретический, но и практический интерес, в частности перенапряжение водорода. Для иллюстрации этого можно указать, что выделение путем электролиза таких металлов, как Ре, РЬ, 2п, которые стоят выше водорода в ряду напряжений, может осуществляться только благодаря тому, что они обладают перенапряжением, значительно меньшим, чем перенапряжение водорода на этих металлах, в особенности при высоких плотностях тока. Поэтому потенциал выделения его становится большим, чем потенциал выделения этих металлов. В случае применения тока большей плотности при высоком перенапряжении можно получать вещества в более активном состоянии. [c.452]

    Третий вывод выглядит обещающим, однако не стоит впадать в иллюзию, так как он основывается на предположении, что межмолекулярные силы являются парно аддитивными. Другими словами, если экспериментальные значения С (Т) лежат выше расчетной кривой, а рассчитанные значения получены с помощью параметров потенциала, выделенных, как это всегда делается на практике, на основе наилучшего описания В (7), то из фиг. 4.4 можно сделать вывод, что потенциальная яма применительно к используемой модели была недостаточно широка. К сожалению, этот вывод не совсем обоснован, так как неаддитивность сил притяжения приводит к аналогичным отклонениям. Это уже иллюстрировалось в табл. 2.1 и детально обсуждалось в соответствующих разделах. [c.184]

    В результате электрохимических исследований установлено, что увеличение скорости коррозии в кислых средах связано с облегчением катодной реакции восстановления водорода. В щелочной среде повышение скорости коррозии алюминиевых сплавов сопровождается резким разблагораживанием потенциалов, вызванным растворением окисной пленки на поверхности сплава и переходом его в активное состояние. В сильнощелочных средах потенциал активированной поверхности смещается в отрицательную сторону до тех пор, пока не достигается потенциал выделения водорода из молекул воды. [c.101]

    Реакции на кадмиевом электроде протекают аналогично приведенным выше для железного электрода. Процесс восстановления гидроокиси кадмия при заряде сопровождается небольшой поляризацией. В то же время водород выделяется на кадмии с большим перенапряжением, поэтому потенциал выделения водорода здесь достигается только к концу заряда. [c.88]

    Стандартный потенциал выделения водорода равен —0,828 В. Если условия выделения отличаются от стандартных, равновесный потенциал выделения водорода из раствора можно рассчитать по уравнению [c.140]


    Ранее отмечалось, что потенциал выделения хлора из насыщенного раствора хлористого натрия равен +1,34 В [уравнение (V, 1)], а стандартный потенциал выделения водорода —0,83 В. Следовательно, теоретическое напряжение разложения хлористого натрия при 25 °С составит [c.142]

    Электрохимические свойства марганца и электродные реакции. По электрохимическим свойствам марганец относится к той же группе металлов, что и цинк и кадмий, т. е. к металлам с малым перенапряжением и высоким тюком обмена (см. табл. IX-1), поэтому марганец склонен к образованию крупнозернистых осадков, к дендритообразованию. Достаточно высокое перенапряжение водорода на марганце все же не обеспечивает отрицательного потенциала выделения водорода и только при pH = 2 и более марганец удается выделить на катоде  [c.280]

    В связи с этим равновесный потенциал и потенциал выделения меди при понижении pH в кислой области смещается в сторону менее электроотрицательных значений. [c.402]

    Для выбранных металлов рассчитать величину анодной плотности тока , соответствующую потенциалу пассивации в растворе с величиной pH, считая, что замедленной стадией при протекании анодного процесса является стадия разряда, и вычислить потенциал выделения кислорода [c.158]

    Электролизом расплавов в промышленности получают алюминий, магний, натрий, литий, кальций, титан и другие металлы, потенциалы выделения которых из водных растворов солей более отрицательны, чем потенциал выделения водорода. При электролизе водных растворов хлоридов щелочных металлов выделяются хлор, водород, а также получают каустическую соду. Водород и кислород высокой чистоты выделяются в результате электролиза водных растворов щелочей. [c.251]

    Выше был рассмотрен пример электролиза 1 н. раствора азотнокислого серебра для выделения серебра из такого раствора необходимо напряжение 0,9 в. Очевидно, если концентрация серебра в растворе меньше 1 н., восстановление будет идти труднее и придется приложить большее напряжение. Серебряный электрод, погруженный в разбавленный (например, 0,1 или 0,01 М) раствор соли серебра, имеет по отношению к водородному электроду потенциал меньший, чем 0,9 в. Это соответствует увеличению напряжения разложения, так как потенциал выделения металла сдвигается влево, т. 6. дальше от потенциала выделения кислорода (см. рис. 35). [c.194]

    Потенциал выделения зависит от природы данного иона, однако на его величину оказывает влияние также концентрация восстанавливающегося иона и некоторые другие факторы. Поэтому для качественного анализа полярографическим методом удобнее пользоваться потенциалом полуволны величина этого потенциала не зависит от концентрации. Потенциалом полуволны называется то значение потенциала, при котором происходит возрастание силы тока до половины предельного значения. [c.218]

    Наблюдаемый потенциал выделения никеля при плотностях тока 150—250 а/м и температуре 60° в зависимости от состава раствора будет иметь величину около —0,55 в. [c.316]

    Однако в кислых растворах при высоких плотностях тока наблюдается явление предельного тока. Катодный потенциал при этом возрастает до потенциала выделения водорода, после чего [c.555]

    Одним из металлов, электрохимическое осаждение которого представляет интерес для современной техники, является алюминий. Стандартный потенциал алюминия (—1,66 В) значительно отрицательнее потенциала выделения водорода, поэтому металл не может быть выделен путем электролиза водных растворов, что препятствует использованию алюминия как гальванического покрытия. [c.109]

    Цель работы — изучение влияния плотности тока и материала электродов на баланс напряжения ванны электролиза воды, а также на коэффициент газонаполнения электролита получение сравнительных данных по влиянию материала электродов на потенциал выделения водорода и кислорода в некотором интервале плотности тока. [c.158]

    Значение потенциала можно легко сдвинуть, изменяя кислотность среды, хотя возможности смещения его в отрицательную область (большие значения pH) ограничены образованием осадков гидроксидов выделяемых катионов. Выпадение гидроксидов можно предотвратить, используя реакции комплексообразования, но все же для получения хороших результатов необходимо принимать защитные меры (так как в результате комплексообразования уменьшается активность катионов металлов и их потенциал также сдвигается в отрицательную область). Сильно отрицательное перенапряжение водорода (пНз) на многих металлах по этой причине оказывает благоприятное влияние, поскольку дает возможность проводить электрогравиметрическое определение ряда металлов, как было указано выше. Наконец, следует также учитывать, что потенциал водорода в процессе электролиза сдвигается в сторону положительных значений, так как в растворе возрастает концентрация ионов Н3О+, образующихся эквивалентно количеству выделившегося на катоде металла. Потенциал выделения водорода и по окончании электролиза не должен достигать потенциала зоны осаждения. [c.262]


    Конструктивно твердые электроды более удобны и безопасны, чем ртутные, но область их использования ограничена. Так, платиновый электрод пригоден для работы при более положительных значениях потенциала, чем ртутный, но граница отрицательных значений потенциала определяется значительно мень-щим значением потенциала выделения водорода из водных растворов. Твердые электроды представляют собой проволочки или стержни, запаянные в стеклянные трубки (рис. 2.23). Рабочая поверхность такого электрода приблизительно 0,2 см . Твердые электроды во время работы приводятся во вращение мотором. Каждый раз перед началом работы такой электрод следует промывать раствором НЫОз (1 1), а затем многократно водой. [c.146]

    Это явление наблюдается главным образом в тех случаях, когда продуктами электролиза являются газы. Особенно большое практическое значение имеет перенапряжение при выделении водорода на катодах нз различных металлов. Существенно, что перенапряжение при прочих равных условиях зависит от материала и состояния электрода. Так, на платине, покрытой платиновой чернью, водород выделяется с малым перенапряжением, а на гладкой платине с большим. Значительным перенапряжением сопровождается выделение водорода на свинцовом и ртутном катодах, где по этой причине потенциал выделения сдвинут в отрицательную сторону. [c.199]

    Отсутствие максимумов в растворах КС1 в 20%-ном спирте объясняется тем, что потенциал выделения совпадает с максимумом электрокапиллярной кривой. [c.468]

    Из этой диаграммы также видно, при каких условиях возможно электролитическое выделение железа, когда в растворе присутствуют ионы железа (II). Его потенциал выделения (равновесный, без учета поляризационных явлений) меняется от О при рН=0 до —0,8 В при рН=14. Однако это не означает, что железо можно по- [c.89]

    Таким образом, при некоторой плотности тока потенциал выделения водорода становится отрицательнее, чем потенциал выделения [c.202]

    Потенциал полуволны. Потенциал ртутного катода в тот момент, когда достигнута величина напряжения разложения и начинается электролиз, называется потенциалом выделения (или восстановления) данного иона. Потенциал выделения зависит от природы иона, однако на эту величину оказывает влияние концентрация восстанавливающегося иона и некоторые другие факторы- Поэтому для качественного определения ионов пользуются так называемым потенциалом полуволны, который не зависит от концентрации восстанавливающегося иона. [c.150]

    Наиболее удобным из твердых электродов является платиновый электрод. Перенапряжение водорода на платине невелико, поэтому водород восстанавливается при потенциале —0,1 в. Это ограничивает использование платины в отрицательной области потенциалов. Но зато платина не окисляется при анодной поляризации электрода до потенциала выделения кислорода, т. е, до 4-1,1--1- 1,3 в (в зависимости от [c.153]

    Опытным путем установлено, что потенциалы выделения металлов Ag, 2п и др.), по крайней мере при не слишком больших плотностях тока, большей частью равны или почти равны их электродным потенциалам для растворов данной концентрации, т. е. перенапряжения для них незначительны. Например, потенциал выделения Сс1 из нормального раствора Сс1504 равен 0,42 в, что в точности совпадает с его электродным потенциалом в таком [c.451]

    Таким образом, коррозия с кислородной деполяризацией является термодинамически более возможным процессом, так как равновесный потенциал восстановления кислорода более положителен, чем равновесный потенциал выделения водорода. Общая кривая катодной поляризации (рис. 16) имеет сложный вид и является суммарной нз трех кршзых, характеризующих поляризацию ири ионизации кислорода (/), копцептрацноипую поля-рпзаи,пю (//) и поляризацию при разряде ионов водорода (///). Как это видно из рис. 16, общая катодная кривая слагается из тр х участков, характерных для этих трех процессов. [c.45]

    Химическому разложению КМПО4 способствуют также повы-щенная температура и наличие в растворе электролита суспензии двуокиси марганца, которая оказывает каталитическое действие на процесс разложения КМПО4. Повышение анодной плотности тока снижает выход по току, поскольку при этом потенциал выделения О2 увеличивается в значительно меньшей степени, чем потенциал окисления МпО . Так, при плотностях тока 50, 125 и 200 А/дм выход КМПО4 на анодах из никеля соответственно составляет 88,9, 69,6 и 53,5%. Поэтому процесс обычно ведут при анодных плотностях тока около 70 А/м . [c.204]

    Медь и ее сплавы вытесняют серебро из цианистых электролитов, так как в этих растворах серебро имеет более электроположительный потенциал, чем медь. Образующаяся пленка серебра плохо сцепляется с основой и электролитические осадки, нанесенные на такую поверхность, легко отслаинаются. Для предупреждения отслаивания изделия из меди и ее сплавов амальгамируют или предварительно покрывают поверхность тонким слоем серебра при условиях, когда потенциал выделения серебра становится более электроотрицательным относительно меди. Изделия амальгамируют путем погружения на 3—5 с в раствор цианистой или хлористой ртути, после чего их тщательно промывают и, если нужно, протирают мягкой волосяной щеткой. [c.424]

    Характерным примером значительного облегчения процесса, связанного с материалом катода, является выделение натрия на ртути с образованием амальгамы. При этом потенциал выделения натрия из нейтрального раствора смещается в сторону электроположительных значений примерно на 1 В. Кроме высокого перенапряжения водорода на ртути облегчению процесса способствует химическое взаимодействие между натрием и ртутью, сопровождающееся уменьшением парциальной мольной энергии натрия (АФна). Установлена возможность выделения щелочных металлов на некоторых твердых металлах, например на свинце, цинке [7], а также выделения титана на ряде металлов [51]. [c.434]

    Если рк. э. поместить в раствор, содержащий вещество, способное Окисляться или восстанавливаться на электроде, то прн определенном потенциале (потенциал выделения) в цепи появится электрический ток. Поляризационную кривую, полученную полярографическим методом, часто называют полярографической волной. Полярографические волны имеют вид, показанный на рис. XXV. 9. Различают обратимые, необратимые и квазнобратимые полярогра- [c.301]

    Э. д. с. должна быть равиа отрезку db = 1,237 в. На самом же деле при существующей плотности тока электролиза, pH распвора у анода сдвинется к точке X, т. е. к значению pH = 2, лри котором потенциал выделения кислорода будет отвечать величине 1,042 в— (точка d ). У катода pH раствора сдви-мется к точке у, т. е. ее значению pH = 12, лри котором потенциал катода будет равен — 0,708 в (точка Ь ). Суммарная величина обратной э. д. с. будет равной 1,75 в. Если учесть, что Чо (pt =0,43 в, общая э. д. с. будет равна 2,18 в. [c.36]

    Как известно из практики хромирования, а процесс осаждения хрома существенно влияет ггрисутствие НгЗО в растворе. В отсутствии серной кислоты катод покрывается коричневой пленкой, на нем выделяется только водород. По мере увеличения содержания серной кислоты в растворе возрастает плотность тока, отвечающая площадке предельного тока, причем потенциал выделения металлического хрома и водорода на катоде смещается к более электроотрицательным значениям (рис. 241). [c.522]

    Применение фазоселективного выпрямителя в переменнотоковой полярографии дает возможность полностью устранить емкостный ток, поскольку он опережает фарадеев ток (остаточный ток, обусловленный электродной реакцией деполяризатора). Ход перемениотоковой полярограммы становится понятным пр сопоставлении переменнотоковой полярограммы с постояннотоковой (рис. Д. 120). На постояннотоковой полярограмме (верхняя диаграмма) чистому фоновому электролиту соответствует кривая 1 (штриховая линия). Подъем на этой криво/г при. положительном потенциале ртутного капельного электрода обусловлен анодным растворением ртути, а при большом отрицательном значении потенциала— выделением катионов фонового электролита. При добавлении к фоновому электролиту деполяризатора ход кривой 2 вначале будет таким же. Вблизи потенциала полуволны деполяризатора возникает волна, а затем на кривой снова наблюдается горизонтальный участок до значения потенциала разложения фонового электролита. Небольшое переменное напряжение, наложенное на линейно возрастающее постоянное напряжение переменнотоковой полярографии (в точках а, б, в), вызывает в области небольшого возрастания постояннотоковой полярограммы (а и в) незначительное изменение силы тока, но большое изменение потенциала полуволны в области б, обозначенное б. Поскольку, как указано выше, протекает только переменный ток, на переменнотоковой полярограмме (нижняя диаграмма) наблюдаются только эти изменения. Для обычных деполяризаторов возникают максимумы при значениях их потенциалов полуволн. Таким образом,, в идеальном случае переменнотоковая полярограмма совпадает с первой производной соответствующей постояннотоковой полярограммы (рис. Д.121), а также с дифференциальной полярограммой. Существенным отличием является очень небольшой максимум в случае необратимого электродного процесса,, поскольку малого значения переменного напряжения уже недостаточно для окисления и восстановления соответствующего количества деполяризатора на электродах. Поэтому применение переменнотоковой полярографии ограничено обратимостью электродных реакций. Однако этот метод имеет то преимуще- [c.302]

    Вычислить среднюю ионную активность Си304 в растворе, чтобы потенциал выделения меди равнялся потенциалу выделения цинка из раствора 7п804, если средняя ионная активность 2п504 равна единице при 25 С и 760 мм рт. ст. Считать, что Лфк- -0. [c.219]

    Потенциал осаждения металла из комплекса отличается от потенциала выделения металла из простых солей. Координация аддендов ионами металлов-камплексообразователей приводит к изменению величины потенциала выделения металла. Причем потенциал выделения из однотипных комплексов для разных металлов сдвигается в различной степени в за висимости от прочности образующихся комплексов. Поэтому становится возможным электролитическое разделение этих металлов электролизом растворов их координационных соединений, С другой стороны потенциалы осаждения металлов в результате образования комплексов могут быть сближены. Электролиз растворов таких ком1плексов приводит к выделению сплавов. Например, в присутствии избытка цианид-иона удается электролитически отделить железо от цинка, тогда как при электролизе циаяидсодер-жащих растворов меди и цинка выделяется латунь. [c.15]


Смотреть страницы где упоминается термин Потенциал выделения: [c.430]    [c.313]    [c.227]    [c.391]    [c.142]    [c.160]    [c.33]    [c.498]    [c.10]    [c.90]    [c.402]    [c.267]   
Краткий курс физической химии Изд5 (1978) -- [ c.445 , c.446 ]

Комплексообразование в растворах (1964) -- [ c.209 , c.210 , c.256 ]

Курс неорганической химии (1963) -- [ c.53 ]

Введение в электрохимию (1951) -- [ c.564 ]

Курс теоретической электрохимии (1951) -- [ c.264 ]

Инструментальные методы химического анализа (1960) -- [ c.71 , c.104 ]

Инструментальные методы химического анализа (1960) -- [ c.71 , c.104 ]

Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.13 , c.56 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.438 ]

Курс физической химии Издание 3 (1975) -- [ c.612 ]

Основы аналитической химии Кн 3 Издание 2 (1977) -- [ c.167 ]

Полярографический анализ (1959) -- [ c.41 ]

Курс неорганической химии (1972) -- [ c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Алкалоиды, катализ выделения водорода потенциалы полуволн

Влияние индифферентных электролитов на потенциал выделения и потенциал полуволны

Влияние потенциала и природы доноров протона на кинетический изотопный эффект и иредэкспонеициальный фактор выделения водорода

Водород потенциалы выделения

Возникновение потенциала у электродов. Самопроизвольное выделение кислорода а водорода

Выделение металлов потенциал, определение

Графит потенциал выделения хлора

Графитовые аноды потенциал выделения хлора

Измерение потенциала выделения металла и перенапряжения водорода

Кислород потенциал выделения

Кислород потенциал выделения на графите

М и х а й л о в. Влияние электролитов на потенциал выделения меди

Магнетит потенциал выделения хлора

Натрия хлорид потенциал выделения С из растворов

Нормальные потенциалы выделения хлора и водород

Потенциал абсолютный выделения начала волны

Потенциал восстановления выделения

Потенциал выделения металла

Потенциал выделения элементов

Потенциал выделения, влияние поверхностноактивных веществ

Потенциалы выделения водорода в соляной кислоте

Потенциалы выделения водорода и хлора

Потенциалы выделения хлора

Потенциалы разложения и выделения

Потенциалы растворения и выделения

Технеция следы, критический потенциал выделения

Установка для изучения потенциала выделения металла и перенапряжения

Электроаналитическое выделение без Контроля катодного потенциала на платиновом катоде

Электроаналитическое выделение при контроле катодного потенциала



© 2025 chem21.info Реклама на сайте