Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение перенапряжения водорода

    РАБОТА 69. ОПРЕДЕЛЕНИЕ ПЕРЕНАПРЯЖЕНИЯ ВОДОРОДА [c.209]

    Работа 38. Определение перенапряжения водорода (косвенный метод) [c.188]

    Необходимым условием при определении перенапряжения водорода является устранение побочных реакций на катоде, В противном случае расчет плотности тока будет неверным. [c.188]

Рис. 84. Установка для определения перенапряжения водорода Рис. 84. Установка для <a href="/info/12636">определения перенапряжения</a> водорода

    Еще в предвоенные годы С. И. Скляренко и О. С. Дружинина [123] высказали предположение, что вольфрам, как и его аналог молибден, не может быть выДелен из водных растворов вследствие низкого перенапряжения водорода на этих металлах. Однако при экспериментальном определении перенапряжения водорода на сплавах использовались образцы, поверхность которых была покрыта естественной окисной пленкой. Отсутствие данных для неокис-ленных металлов и сплавов делает невозможной проверку предположения С. И. Скляренко и О. С. Дружининой. [c.51]

    Работа 32. Определение перенапряжения водорода [c.173]

    Количественный учет всех противоположных влияний здесь довольно сложен и требует знания констант устойчивости комплексов, а также величин перенапряжения водорода при разных значениях pH. Однако на опыте установлено, что электролитическое определение многих металлов (цинка, никеля и т. д.) из растворов, содержащих аммиачные, цианистые, оксалатные и другие комплексы, вполне возможно, и обычно дает хорошие результаты. К нему приходится прибегать всегда, когда хотят вести в щелочной среде электролитическое осаждение металла, гидроокись ко-торо о малорастворима. Кроме понижения концентрации Н -ионов [c.435]

    Вследствие высокого перенапряжения водорода на ртути (около 1 в) и способности ее к образованию амальгам, обладающих меньшими потенциалами, чем сами выделяющиеся при электролизе металлы, электролиз с применением ртутного катода дает возможность проводить ряд разделений, имеющих большое практическое значение. В качестве примера такого разделения рассмот-трим определение содержания титана в стали (или чугуне). [c.446]

    Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами. [c.42]


    Значение потенциала можно легко сдвинуть, изменяя кислотность среды, хотя возможности смещения его в отрицательную область (большие значения pH) ограничены образованием осадков гидроксидов выделяемых катионов. Выпадение гидроксидов можно предотвратить, используя реакции комплексообразования, но все же для получения хороших результатов необходимо принимать защитные меры (так как в результате комплексообразования уменьшается активность катионов металлов и их потенциал также сдвигается в отрицательную область). Сильно отрицательное перенапряжение водорода (пНз) на многих металлах по этой причине оказывает благоприятное влияние, поскольку дает возможность проводить электрогравиметрическое определение ряда металлов, как было указано выше. Наконец, следует также учитывать, что потенциал водорода в процессе электролиза сдвигается в сторону положительных значений, так как в растворе возрастает концентрация ионов Н3О+, образующихся эквивалентно количеству выделившегося на катоде металла. Потенциал выделения водорода и по окончании электролиза не должен достигать потенциала зоны осаждения. [c.262]

    В качестве поляризуемого рабочего электрода в полярографии используют ртутный капельный электрод. Он имеет небольшую поверхность и, следовательно, высокую плотность тока при малой силе тока (если пренебречь изменением концентрации пробы в результате электролиза), поэтому он легко поляризуется. При добавлении ртути по каплям (удовлетворительное время капания 3—5 с) в каждый момент образуется идеальная электродная поверхность. Другое преимущество электрода — большое перенапряжение водорода на ртути, что дает возможность в. нейтральном растворе проводить определение даже щелочных металлов. Этот электрод можно применять в области относительно высоких отрицательных потенциалов. Напротив, его положительная граница, измеренная относительно каломельного электрода, находится при -[-0,45 В (из-за анодного растворения ртути). [c.280]

    Итак, теоретический расчет и экспериментальные данные показывают, что при оценке величины /,., в определенных условиях можно пользоваться точкой пересечения поляризационных кривых растворения основного металла и выделения водорода на включении. Если растворению подвергается лишь основной металл, то ток его саморастворения можно определить по скорости выделения водорода, которая складывается из тока выделения водорода на основном металле и на включении при стационарном потенциале. Токи выделения водорода, а следовательно, и / можно рассчитать, зная площади поверхностей основного металла и включения 5 и зависимости скорости выделения водорода на них от перенапряжения. В самом деле, предположим, что скорость выделения водорода на основном металле и включении подчиняется уравнению Тафеля (см. уравнение (47.6)] с одинаковым коэффициентом Ь, но с различными значениями а, причем а >ав т. е. включение обладает меньшим перенапряжением водорода. Одинаковое значение потенциала на основном металле и на включении означает, что [c.364]

    Платиновый электрод может быть использован в положительной области потенциалов (до +1,3 в). Для определения катионов он применяется редко, так как поверхность его изменяется при выделении на нем металлов. Кроме того, большинство металлов выделяется при отрицательных потенциалах, платиновый же электрод не может быть использован в таких условиях. Иногда для этой цели используются твердые амальгамированные электроды, на которых перенапряжение водорода так же велико, как и на ртути. [c.155]

    Применение методов определения pH в католите и анолите позволяет решить вопрос об условиях торможения электродной реакции, а также о порядке реакции. Это весьма существенно для правильных представлений и выводов о механизме электродных процессов. Например, результаты исследования зависимости перенапряжения водорода на различных катодах от pH раствора позволили В. С. Багоцкому получить ценные данные о механизме этого процесса и природе реагирующих частиц при исследовании кинетики выделения водорода на ртути из растворов, содержащих НС1 и КС1. [c.266]

    Ртутный капельный электрод имеет ряд преимущества 1) легкость достижения предельной плотности тока из-за малого диаметра капли — катода (0,05 мм) 2) непрерывное обновление электрода, обеспечивающее постоянство условий и воспроизводимость результатов анализа 3) достаточную устойчивость металлической ртути в кислотах и щелочах 4) высокое перенапряжение водорода на ртути, что обеспечивает возможность определения ряда электроотрицательных катионов. [c.286]


    При поляризации внешним током картина изменяется. Вследствие малого перенапряжения при разряде и ионизации-цинка и высокого перенапряжения водорода на цинке наклоны кривых поляризации цинка и водорода будут различны (для водорода 0 = 6 = 0,12 В). Поэтому кривая катодной поляризации водорода при определенной плотности тока пересечет анодную кривую цинка. До достижения значения равновесного потенциала цинка в данных условиях на катоде выделяется только водород, а цинк растворяется. При катодной поляризации электрода водород образуется уже за счет двух процессов самопроизвольного растворения цинка (процесс 2Н++2е — -Иг является сопряженным с процессом 2п—>-2п ++2е) и внешнего катодного тока. [c.383]

    Как видно из приведенных данных, потенциал, который имеет большинство металлов в нейтральных электролитах, достаточен (даже с учетом наличия определенного перенапряжения) для протекания, например, такой реакции, как восстановление кислорода, всегда присутствующего в растворенном виде в электролите. На некоторых металлах в этих условиях могут протекать процесс восстановления водорода, диоксида серы, хлора и другие реакции. [c.8]

    С повышением температуры перенапряжение водорода уменьшается. Поскольку перенапряжение зависит от состава раствора, то можно путем его изменения регулировать в определенных границах и скорость выделения водорода, а следовательно, и скорость коррозии. Для металлов, обладающих высоким перенапряжением, повышение температуры на 1 град приводит к снижению перенапряжения в среднем на 2—4 мВ. [c.11]

    Перенапряжение водорода на амальгамном катоде выше, чем на ртутном [21, 22]. Точное определение перенапряжения выделения водорода на амальгамном катоде затруднено сильным влиянием ряда примесей на процесс выделения водорода. В нейтральном насыщенном растворе поваренной соли перенапряжение водорода для амальгамы концентрацией натрия 0,055 вес.% составляет около 2,1 В, а для амальгамы промышленной концентрации — 2,15 В [23]. [c.37]

    Тороповой и Елизаровой [4326] использованы полярографические каталитические токи водорода в растворе 8-оксихиноли-ната кобальта для определения бериллия. Метод основан на свойстве 8-оксихинолината кобальта снижать перенапряжение водорода на ртутном капельном электроде, в результате чего возникают каталитические токи водорода. Присутствие бериллия вызывает понижение высоты каталитической волны 8-оксихинолината кобальта, причем это уменьшение пропорционально концентрации бериллия. [c.88]

    Реакции, приводящие к появлению каталитических токов, известны уже давно. Каталитические токи для определения очень малых концентраций рения впер- вые применил еще Гейровский [1]. В тридцатые годы XX века установлено, что даже следы некоторых ме-таллов резко снижают перенапряжение водорода. В присутствии соединений платиновых металлов этот эффект становится заметным при концентрациях порядка 10 моль-л [2]. [c.321]

    Вещества, снижающие перенапряжение водорода, можно разделить на две группы а) деполяризаторы, которые после разряда на электроде образуют на его поверхности каталитически активные продукты (активные центры) б) соединения с определенными функциональными группами, имеющие характер доноров протонов и адсорбирующиеся на поверхности электрода. [c.381]

    Интересно отметить, что результаты, наблюдаемые по такому расчету, по порядку величины совпадают с данными других методов расчета, в частности из определения перенапряжения водорода на ртути. Пропорциональность между количеством протекшего через цепь электричества и перенапряжением заставляет предположить, что перенапряжение вызывается двойным элек--тричеоким слоем, состоящим из водородных ионов в водном рас- [c.16]

    Экстраполяция всегда должна производиться на основе знания количественных законов данного явления, подкрепленного физическими представлениями о механизме явления. В противном случае экстраполяция может привести к серьезным ошибкам. Примером правильной экстраполяции является использование предельного закона Дебая — Г юккеля для определения стандартных потенциалов и констант диссоциации (см. рис. 56 и 65). Кривую строят так, чтобы при большом разведении там, где действует предельный закон, получилась прямая линия. При этих условиях простая линейная экстраполяция кривой законна. Примером неправильной экстраполяции может служить произведенная Хиклингом и Солтом чисто формально линейная экстраполяция кривых спадания потенциала во времени при коммутативном методе определения перенапряжения водорода. Как увидим ниже в результате такой экстраполяции авторы пришли к оши- бочным выводам о существовании максимумов на кривых перенапряг жения. Прим. ред.). [c.369]

    Таким образом, при электролизе кислот, щелочей л соответствующих солей щелочных и щелочноземельных металлов на З лектродах протекает единственный процесс разложения воды, т. е. выделение водорода и кислорода является первичным процессом при электролизе. Ролъ остальных ионов сводится лишь к обеспечению достаточной для электролиза электропроводности. Следует подчеркнуть, что близость э.д.с. поляри 1ации при з лектролизе кислородсодержащих кислот и щелочей н,1блюдает-ся только при использовании электродов из определенных металлов (Pt, Pd), на которых мало перенапряжение водорода. [c.617]

    Перенапряжение водорода измеряют на свинцовом, медном, никелевом, кобальтовом и др. электродах в растворе 0,5/я H2SO4. Цель работы — определение коэффициентов а и 6 уравнения Тафеля, вычисление коэффициента переноса и тока обмена. [c.299]

    Некоторые металлы не удается выделить электролизом водных растворов. Это металлы, обладающие большим отрицательным потенциалом (щелочные, щелочноземельные), а также металлы, на которых имеется небольшое перенапряжение водорода (ванадий, ниобий, тантал, титан, цирконий). В определенных, условиях они осаждаются па элекТ роде тончайшим слоем, но затем процесс прекращаетс.ч вследствие выделения на них водорода. [c.25]

    Процессы, происходящие на электродах. Основное преимущество ртутного капающего электрода для полярографического анализа катионов заключается прежде всего в том, что поверхность его постоянно обновляется. На ней не накапливается, как на твердых электродах, слой постороннего металла, изменяющего свойства электрода, и поэтому условия определения остаются все время постоянными. Кроме того, перенапряжение водорода на ртути очень велико, т. е, свободный водород выделяется на ртуть только при больших отрицательных значениях потенциала. Это дает возможность определять многпе металлы в нейтральных и даже кислых растворах. [c.149]

    Оказалось, что потенциалы выделения большинства металлов почти равны равновесным потенциалам на границе данного металла с раствором соли того же металла определенной концентрации, т. е. величины перенапряжения металлов незначительны. Исключение составляют металлы Ре, Со, N1, у которых перенапряжение при значительной скорости выделения составляет 0,2—0,3 в (при комнатной температуре). Потенциалы выделения газов намного превышают равновесные потенциалы. Особенно большое перенапряжение водорода на ртути. Так, например, при плотности тока 10 ма/см в I н. растворе Н2504 оно составляет 1,16 в по отношению к теоретическому равновесному водородному электроду. [c.321]

    Во многих случаях четко проявляется э.пектроката.питиче-ский характер процесса, так как в пределах одной и той же группы металлов с высоким перенапряжением водорода довольно значительно колеблются выходы спиртов и пинаконов. Одному из этих двух конкурирующих процессов, а именно образованию пинакона, обычно благоприятствуют высокие концентрации исходного соединения и фонового электролита, щелочная среда, слегка повышенная температура. Повышение плотности тока благоприятствует протеканию реакций сочетания до определенного предела вследствие сдвига потенциала к более отрицательным значениям, при которых идет образование спирта. В неводных растворах повышению выхода пинакона благоприятствует наличие иоиа. пития, с которым легко образуются ионные пары. [c.341]

    ТОКА электроде с постоянной площадью поверхности существенно понижают предел обиаружеиия. Так, амперометрическое титрование можно нспользовать для количественного определения веществ в интервале конце1ггращ1Й от 10 до 10 М. Но необходимо помнить, что низкое перенапряжение водорода на платиновом электроде может оказаться серьезной проблемой при использовании. его в качестве катода в кислых растворах. [c.377]

    Многие органические соединения, а также их комплексы с переходными элементами снижают перенапряжение водорода на ртутном электроде. В результате возникают каталитические водородные токи, величина которых в строго контролируемых условиях пропорциональна концентрации катализатора — вещества, снижающего перенапряжение водорода. Катализаторами могут быть многие азот- и серосодержащие органические соединения. Несмотря на все перечисленные сложности, полярография пригодна дпя количественного определения многих органических соединений в весьма сложных объектах. Есть и прямые методы определения электроактивных веществ (определяют следы С Н,К02 в анилине), и косвенные методы, основанные, например, на измерении степени подавления полярографических максимумов. Так можно оценивать молекулярные массы продуктов гидролиза крахмала ипи определять степень загрязнения различных вод природными и синтетическими ПАВ. Современные фармакопеи многих развитых стран рекомендуют полярографические методы определения лек хпвенных прещтов — алкалоидов, гормонов, антибиотиков, витаминов. [c.189]

    На протяжении почти 20 лет после возникновения полярографии (1922 г.) основное внимание сосредоточивалось на объяснении кривых зависимости силы тока от напряжения (потенциала электрода), полученных при электролизе с применением ртутного капельного электрода. Позднее на ртутном капельном электроде исследовались и другие зависимости (например, аависимость производной от тока по потенциалу от потенциала, зависимость тока от времени, зависимость потенциала капельного электрода от времени, зависимость производной от потенциала по времени от времени и др.). Успехи, достигнутые при работе с ртутным капельным электродом, дали толчок к исследованиям с помощью других электродов, например со струйчатым электродом, висящей ртутной каплей, с вращающимся и вибрирующим ртутными электродами и др. Благодаря этому содержание понятия полярография значительно расщирилось. Оно не охватывает исследования, проведенные на твердых электродах, но включает исследование физико-химических процессов и явлений, наблюдаемых на ртутных капиллярных электродах при их поляризации заданным напряжением или заданной силой тока. Под выражением капиллярный электрод мы понимаем прежде всего ртутный капельный электрод, с которым было проведено наибольшее количество исследований, ртутный струйчатый электрод и висящую ртутную каплю. Наиболее важным свойством этих электродов является то, что результаты, полученные с их помощью, очень хорошо воспроизводятся. Еще со времен Фарадея ртуть в электрохимии применяется как наилучший материал для электродов. Это обусловлено ее сравнительно высокой химической стойкостью, большим перенапряжением водорода на ртути, а также тем, что ее можно сравнительно легко получить в очень чистом виде. К тому же применяемые в полярографии электроды (капельные и струйчатые) непрерывно обновляют поверхность, вследствие чего изучаемые процессы протекают в достаточно строго определенных условиях и не подвергаются влиянию предшествующих процессов. [c.11]


Смотреть страницы где упоминается термин Определение перенапряжения водорода: [c.242]    [c.232]    [c.354]    [c.363]    [c.363]    [c.258]    [c.363]    [c.297]    [c.416]    [c.243]    [c.39]    [c.208]   
Смотреть главы в:

Практикум по физической химии -> Определение перенапряжения водорода




ПОИСК





Смотрите так же термины и статьи:

Водород определение

Перенапряжение

Перенапряжение водорода

Перенапряжение определение



© 2025 chem21.info Реклама на сайте