Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение водорода функционально группой

    Органические вещества могут участвовать в протолитических, окислительно-восстановительных реакциях, а также реакциях осаждения и комплексообразования, что обусловлено химическими свойствами их функциональных групп. В связи с этим для количественного титриметрического анализа органических соединений используют в основном те же методы, что и для анализа неорганических соединений. Кроме того, для целей анализа используют реакции конденсации, замещения водорода, введения нитро- или нитрозо-групп, присоединения, свойственные органическим веществам. В некоторых случаях в процессе титрования сочетаются несколько типов взаимодействий, например окисление— восстановление, замещение водорода и присоединение, кислотно-основное взаимодействие и присоединение и т. п. [c.213]


    Как было показано в предшествующем материале, чисто химическое использование парафиновых углеводородов основывается почти полностью на реакциях замещения, т. е. на замене одного или нескольких атомов водорода функциональными группами. В свою очередь продукты замещения превращаются в результате дальнейших химических изменений в важные для промышленности промежуточные и конечные продукты. [c.529]

    Основная цель обработки глинистых дисперсий гуматами заключается в повышении их агрегативной устойчивости. Установлено, что эффективность действия гуматов как реагентов — стабилизаторов зависит от способа получения и условий их применения [3]. Большие трудности возникают при получении чистых образцов гуматов натрия, так как в зависимости от pH среды ионообменные реакции протекают не только с разной скоростью от величины pH зависит степень замещения водорода функциональных групп (—ОН и —СООН) катионами щелочного металла, а это — наиболее важное в установлении природы действия гуматов на физико-химические свойства дисперсной системы. [c.157]

    Замещение водорода функциональной группой [c.210]

    Окисление представляет собой процесс, противоположный восстановлению, и, следовательно, реакции, которые будут рассмотрены в данной главе, в конечном счете обратны описанным в гл. 8 реакциям. Нами были рассмотрены три различных тИ па восстановления присоединение водорода по кратным связям (с использованием каталитических и некаталитических методов), замещение водородом функциональной группы и одноэлектронное присоединение к электрофильному центру. Противоположные этим реакциям окислительные процессы следующие отщепление водорода с образованием кратных связей, замещение водорода функциональной группой и одноэлектронное отщепление от нуклеофильного центра. [c.211]

    Основу систематических названий составляют названия углеводородов (гетероциклических ядер). Остальные соединения рассматриваются как происходящие из углеводородов путем образования кратных связей, замещения водорода функциональными группами и нефункциональными заместителями. Название исходного углеводорода (гетероцикла) входит как обязательная, неизменяемая составная часть в название его производного. Никакие изменения в функциональном характере соединения не могут привести к изменению выбора главной цепи и порядка нумерации, определенных углеродным скелетом. [c.128]


    При замещении в гомологических рядах углеводородов одного или нескольких атомов водорода функциональными группами X (любой [c.179]

    В ходе построения углеродного скелета молекулы вещества, для которого проводится расчет, каждое замещение водорода метильной группой, как и введение функциональной группы, приводит к изменению величин АЯ°/,298, 5°298, а, и с на некоторые поправки. Величина поправки зависит от типа замещения и природы функциональной группы. Первое замещение водорода в молекуле основного вещества называется первичным таким же считается и расширение кольца в молекуле циклогексана. Для бензола и нафталина все последовательные замещения в ядре — первичные, однако поправки зависят от относительного расположения заместителей (табл. 4). Все остальные замещения водорода называются вторичными для них величина поправки зависит от структуры молекулы, в которой проводится замещение (табл. 5). Структурные особенности молекулы определяются ее строением, причем учитывают тип атома, у которого происходит замещение (тип А), и тип соседнего, наиболее замещенного атома углерода (тип В). Типы А и В обозначают цифрами от 1 до 4, соответствующими степени замещенности данного атома — первичного, вторичного, третичного или четвертичного. Тип атома, находящегося в ароматическом кольце, обозначают цифрой 5. В соответствии с этим, например, поправки к теплотам образования при переходе от пропана к изобутану (А = 2, В=1) и от этилбензола к изопропилбензолу [c.29]

    Формула Кекуле отвечала молекулярной формуле бензола, объясняла одновременное присоединение трех молекул реагентов по трем двойным связям. С другой стороны, из этой формулы видно, что все атомы водорода соединены с одинаковыми по своей ненасыщенности атомами углерода. Поэтому какой бы из атомов водорода ни был замещен одной функциональной группой, всегда получится только одно производное. [c.58]

    Эта глава посвящена таким классам соединений, которые содержат функциональные группы с насыщенным атомом углерода рассматривается их структура, номенклатура, реакции и методы определения структуры. Эти классы можно рассматривать как производные простых неорганических соединений (например, галогеноводородных кислот, воды, сероводорода или аммиака),получающиеся при замещении водорода углеводородными группами. В образующихся при этом веществах появляются свойства как неорганических соединений, так и углеводородов, рассмотренных л предыдущей главе. [c.46]

    В гл. 4 указывалось, что для построения заместительного названия необходимо выбрать родоначальное соединение и указать замещение водорода в нем один из заместителей (главную функцию) называют в суффиксе, остальные — в префиксах. В элементорганических соединениях в качестве родоначального соединения часто можно принять либо гидрид элемента, либо органическое соединение. Это приводит к существенно различающимся названиям. В СА органическую часть считают родоначальной, если она содержит любую функциональную группу, называемую в суффиксе. [c.193]

    При замещении одного или нескольких атомов водорода в углеводородах на другие атомы или группы атомов (функциональные группы) образуются различные производные углеводородов — классы органических соединений (табл. 21). [c.54]

    Углеводород (разд. 24.1)-соединение углерода и водорода. Замещенные углеводороды могут содержать функциональные группы, в которые кроме углерода и водорода входят атомы других элементов. [c.437]

    Только с использованием этой формулы можно правильно описать, например, электронные спектры поглощения различных соединений на основе бутадиена, получаемых замещением атомов водорода на другие функциональные группы атомов. Направление некоторых реакций и получающиеся в них продз кты также требуют привлечения последней формулы. [c.148]

    Поиски в молекулах неизменных фрагментов вскоре уступили место изучению ее изменяющихся частей (говоря современным языком — функциональных групп). Этот этап привел к развитию унитарной теории типов Ш. Жерара (середина XIX в.), в которой вещество рассматривалось как единое целое. Известные с то время соединения были классифицированы как продукты замещения водорода на органические остатки в соединениях НаО, НС1, NHg, На- Так, спирт относился к типу воды, а хлористый этил — к типу хлороводорода. Немецкий химик А. Кекуле установил тип метана. [c.8]

    Нуклеофильные реакции распространены не только среди алифатических соединений, но и в ароматическом ряду. Наиболее типичными нуклеофильными реагентами для этого класса являются ионы ОН", ОН", НН,7, Замещению может подвергаться водород и галоид, а также некоторые функциональные группы. Наличие электроноакцепторных групп содействует нуклеофильному замещению, ориентируя вхождение заместителя в орто- или пара-положения [c.197]

    При замещении одного или нескольких атомов водорода в углеводородах на другие атомы или группы атомов, называемых функциональными группами, получают производные углеводородов галогенопроизводные, спирты, альдегиды, кетоны, кислоты и т. д. Введение той или иной функциональной группы в состав соединения, как правило, коренным образом изменяет его свойства. Например, введение карбокси-группы — СООН приводит к появлению кислотных свойств у органических соединений. Сокращенную формулу производных углеводородов можно записать в виде НФ, где К — остаток углеводородов (радикал), Ф — функ- [c.305]


    НС=0, —НОо), или происходит замещение всей функциональной группы (например—ОН), содержащей кислород, на водород, называют обычно реакциями восстановления. Другие функциональные группы (Р, С1, Вг, I, —5Н, —СНз, —С2Н5, —СвНб) также могут быть замещены водородом. [c.230]

    Как правило галогентриазины получают введением галогена в триазиновое кольцо путем замещения других функциональных групп ОКСО-, ТИОКСО-, галогена или водорода на галоген. [c.31]

    При замещении в гомологических рядах углеводородов одного или нескольких атомов водорода функциональными группами образуются гомологические ряды — галогенпроизводных ЯХ, спиртов / 0Н, аминов / НН2, кислот iR OOH и т. д., где Я — радикал ( affin+l СпЯги—1И др.). [c.85]

    Линейные молекулы этого полимера — полиакрилоннтрила построены из звеньев нитрила акриловой кислоты (нитрилами называются вещества, в молекулах которых органический радикал связан с углеродом группы —СМ, или —С = Н). Молекулу поли-акрилонитрила можно рассматривать как продукт замещения в молекуле полиэтилена каждого второго атома водорода функциональной группой класса нитрилов —СК. [c.270]

    Один из главных методов синтеза фторорганических соединений — взаимодействие углеводородов и их производных г фторидами металлов, пригодными в качестве фторирующих агентов. Разработаны два общих способа синтеза. По одном из них при действии фторида металла происходит замещение фтором функциональной группы (чаще всего атома другого галогена) в молекуле органического вещества, причем водород и ненасыщенные связи почти не затрагиваются. По другому способу органическое соединение фторируется более глубоко. Все связанные с углеродным скелетом атомы могут быть замещены фтором, и происходит насыщение двойной связи, в результате чего образуются высокофторированные продукты и, в конечном счете, фторуглероды. [c.424]

    Эти механизмы подобны механизмам реакций, приводящих к образованию связей С—С, поэтому дальнейшее обсуждение здесь опущено. Разнообразные процессы замещения бора функциональными группами применяют как для перехода от легко доступных органоборанов к различным классам органических соединений, так и для удаления бора из органических продуктов реакций, протекающих с образованием новых связей С—С. Чаще всего используют хорошо известное окисление щелочным пероксидом водорода, но в принципе можно применять и другие реакции. [c.387]

    Существенное влияние на степень ограничения трансляционного движения атомов благородных газов при растворении оказывает природа и строение молекул неводного растворителя (рис. 1), Из рис. 1 следует, что влияние замены одних функциональных групп на другие различно. Замещение водорода метильной группой вызывает, как правило, повышение х. Так, в рядах нормальных первичных спиртов (метиловый—октиловый), алифатичеких кетонов (ацетон—дипропилкетон), альдегидов предельного ряда (уксусная — масляная), ароматических углеводородов (этилбензол — метилизопропилбензол) с увеличением числа СНз-групп значения х увеличиваются. Для ароматических аминов (анилин — диэтиланилин), циклогексана и его производных, а также предельных углеводородов характерно уменьшение х с ростом числа углеводородных атомов. Замещение в бензоле водорода галоидом, амино- и нитро- или альдегидогруппами, а также замещение в циклогексане радикала метилена карбонильной группой и водорода в парафинах гидроокислом способствует повышению х. Рассматривая некоторые изомерные, нормальные и разветвленные молекулы растворителей, можно заметить, что повышение геометрической симметрии молекул и их ветвления уменьшает значение х. В целом, анализируя значения степени ограничения трансляционного движения молекул Не, Ме, Аг, Кг, Хе и Кп во всех рассмотренных растворителях, можно составить следующий ряд по степени увеличения х в порядке увеличения компактности их структуры предельные углеводороды <первичные спирты < алифатические кетоны < альдегиды предельного ряда < [c.67]

    Экспериментальные данные и опыт эксплуатации полимерных материалов в условиях воздействия агрессивных сред позволяют делать выводы о связи мелсду структурой высокомолекулярных соединений и их химической стойкостью, В отличие от низкомолекулярных соединений, макромолекула содержит большое число реакционноспособных групп, в зависимости от характера которых или замены их другими группами свойства полимера могут в значительной степени изменяться в сторону их ухудшения или улучшения. Например, на поливиниловый снирт, содержащий гидроксильные группы, оказывают влияние вода, кислоты и щелочи. Стойкость поливинилацет ата, полиакриловой кислоты и других высокомолекулярных соединений, которые можно представить как производные полиэтилена при частичном или полном замещении водорода гидроксильными, ацетатными или другими функциональными группами, также понижена. Соединения, у которых водород в полиэтиленовой н,епи замещен фтором или фтором и хлором, стойки во всех агрессивных средах. [c.357]

    Ониевые соединения. В таблицу включены простейшие аммониевые соединения, под которыми понимаются вещества, имеющие у атома азота четыре (замещенных) углеводородных радикала. Названия таких соединений строятся по радикальнофункциональной номенклатуре, например Тетраметиламмоний, иодид Пириди-нин, 1-метил-, иодид. Если у атома азота находится хотя бы один атом водорода, такие соединения рассматриваются как соли соответствующих аминов и могут быть найдены как производные последних по функциональной группе, например Анилин, гидрохлорид. [c.9]

    Во введении к данной главе отмечалось, что определенные группы или группировки атомов придают органическим молекулам специфические свойства. Эти группы называются функциональными. Мы уже знакомы с двумя такими группами-двойной и тройной углерод-углеродными связями, каждая из которых придает молекулам углеводородов повышенную реакционную способность. Функциональные группы могут содержать не только атомы углерода и водорода, но также атомы других элементов, чаще всего кислорода, азота или галогенов. Соединения, содержащие эти элементы, принято рассматривать как производные углеводородов их можно считать продуктами замещения одного или нескольких атомов водорода в углеводородах на функциональные группы. Каждое такое соединение считается состоящим из двух частей углеводородного фрагмента, например алкильной группы (которую всегда обозначают латинской буквой К), и одной или нескольких функциональных групп [c.427]

    При действии избытка щелочи на дизамещенный бензол, в котором один атом водорода замещен атомом хлора, а другой — в положении 4 функциональной группой, получилось соединение состава eHjNONa. Выведите формулу строения исходного соединения. [c.152]

    Функциональные производные различных классов углеводородов получаются при операции замещения атома(ов) водорода в углеводороде на атом шш группу атомов, отличных от углерода и водорода. Для таких функци0на пзных производных характерными являются реакции, протекающие по этим п уппам, а в целом, оргашческая химия - это прежде всего химия функциональных групп, хотя свойства оргаршческих веществ определяются также и структурой углеводородного скелета. [c.175]

    Пример 4 ИК-спектр неизвестного соединения, показанный на рис. 1.14, надо использовать для получения первичной информации о природе вещества. Важнейшая особенность этого спектра состоит в отсутствии полос валентных колебаний С—Н на участке 2800— 3000 см , следовательно, вещество вообще не содержит алкильных или циклоалкильных радикалов. Две довольно интенсивные узкие полосы 3070 и 3110 см - по своему положению и контуру должны быть приписаны валентным колебаниям водорода при ароматических кольцах или двойных связях. (Повышенное значение частоты 3110 см - может рассматриваться как указание на гетероароматическую структуру.) Никаких других полос валентных колебаний водорода в спектре нет, так что несомненно отсутствуют т кие функциональные группы, как ОН, СООН, ЫН, 8Н, 51Н, PH. Огсутствуют также тройные связи, но в области двойных связей имеются две неполностью разрешенные полосы 1550 и 1580 см" , которые можно приписать ароматическим кольцам или сопряженным поли-енам. Невысокая их интенсивность свидетельствует скорее в пользу первых. В пользу ароматических структур может быть истолковано и наличие нескольких слабых полос в области 1650— 2000 см . При отсутствии водорода алкильных и циклоалкильных радикалов можно ожидать радикалов, полностью замещенных галогеном. Наличие перфторалкильных групп маловероятно, так как в области 1400— 1100 см имеются только две полосы, однако перхлоралкильные группировки могут присутствовать, поскольку в спектре имеется очень сильная широкая полоса 720 см" с неоднозначным истолкованием. Относительно бром- и кислородсодержащих группировок рас- [c.25]

    Галогенпроизводныг углеводородов. Данные соединения получают замещением в углеводородах атомов водорода атомами галогенов. Наибольшее практическое значение имеют фтор- и хлорпро-изводныг углеводородов как важные промежуточные продукты органического синтеза. Отличительная особенность галогенпроизводных заключается в их склонности к реакциям замещения галогенов на другие атомы, радикалы или функциональные группы. Это обусловлено повышенной полярностью связи углерод — галоген. Однако при наличии двойной связи у углерода, соединенного с галогеном, происходит упрочнение связи углерод — галоген, так как р-электроны углерода взаимодействуют с неподеленными парами электронов атома галогена. Особенно высокую прочность имеет связь С—Р (энергия связи 473 кДж/моль). Поэтому фторированные углеводороды обладают инертностью и химической стойкостью. Так, например, вещество, имеющее высокую химическую стойкость, политетрафторэтилен — продукт полимеризации тетрафторэтилена р2С=С 2, называемый фторопластом-4 или тефлоном. [c.264]


Смотреть страницы где упоминается термин Замещение водорода функционально группой: [c.63]    [c.234]    [c.300]    [c.223]    [c.83]    [c.132]    [c.235]    [c.23]    [c.78]    [c.258]    [c.360]   
Смотреть главы в:

Путеводитель по органическому синтезу -> Замещение водорода функционально группой




ПОИСК





Смотрите так же термины и статьи:

Замещение водорода

Замещение водорода на водород

Функциональные группы



© 2025 chem21.info Реклама на сайте