Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая хроматография газ-носитель

    В отличие от газовой хроматографии, в которой подвижной фазой служит газ-носитель, выполняющий лишь функцию переносчика вешества и влияющего только на эффективность колонки, в жидкостной хроматографии в функцию подвижной фазы входит еще и влияние на селективность колонки. Это свойство подвижной жидкой фазы имеет первостепенное значение для ЖАХ, так как оно позволяет достигать оптимальных условий разделения не только выбором соответствующего селективно действующего адсорбента, что не всегда просто, но и подбором системы растворителей, действующих селективно. [c.79]


    В практике газовой хроматографии часто пользуются уравнением Ван-Деемтера, в котором Н выражается как функция линейной скорости газа-носителя а, а остальные величины представляются в виде постоянных коэффициентов. Кроме того, уравнение Ван-Деемтера не учитывает влияния а на эффективный коэффициент вихревой диффузии, вследствие чего член, определяющий действие вихревой диффузии, оказывается постоянным. Тогда уравнение Ван-Деемтера можно представить в следующем виде  [c.29]

    Ряд монографий и обзоров посвящены истории развития газовой хроматографии [4—6], в том числе истории хроматографического анализа нефти и нефтепродуктов [7], основам хроматографического разделения [8—11], качественного [12, 13] и количественного [14, 15] газохроматографического анализ-а, капиллярной хроматографии [16—18], приборам для хроматографии [19—20], автоматизации обработки хроматографической информации и использованию ЭВМ [21—23]. Приведены сведения о хроматографических материалах-носителях и стационарных жидкостях [24— 27], об относительных объемах и индексах удерживания углеводородов на различных неподвижных фазах [12, 28]. Применению газовой хроматографии для анализа нефти, нефтепродуктов, углеводородных смесей посвящены работы [29—33], а в нефтехимии — [34]. [c.115]

    Аппаратура, Принципиальная схема газового хроматографа представлена на рис. 3.3. Подвижная фаза (газ-носитель) непрерывно подается из баллона 1 через редуктор 2 в хроматографическую установку. Анализируемую пробу вводят дозатором 4 либо в поток газа-носителя, либо через резиновую мембрану в испаритель 3. Из испарителя проба переносится газовым потоком в хроматографическую колонку 5. Изменение состава выходящей из колонки смеси фиксируется детектором 7 и записывается на ленте регистратора 9. Хроматографическая колонка и детектор помещены в термостаты 5 и 5. Дозатор предназначен для введения точного количества образца пробы в хроматограф. В качестве дозатора используют специальное дозирующее устройство или микрошприц. Объем вводимой пробы 0,1 мкл — 0,1 мл для жидких и 0,5—20 мл для газообразных проб. [c.192]

    В последнее время все большее применение получает хроматографический метод анализа. Благодаря разработке быстро анализирующих автоматических приборов, способных отбирать и анализировать газ непосредственно из производственного иоток.ч, ) также вследствие высокой точности анализа и возможности опре деления большого числа компонентов, этот метод может быть успешно применен для оперативного автоматизированного управления процессом. Определение состава газов хроматографическим методом основано на адсорбции компонентов газа поверхностью адсорбентов. В качестве адсорбента можно применять активированный уголь, силикагель, алюмогель, так называемые молекуляр иые сита (газовая хроматография) и нелетучие жидкости, нанесенные на инертный носитель, например толченый кирпич, гравий (газо-жидкостная хроматография). [c.88]


    Анализ осуществляли на газовом хроматографе со стеклянной колонкой н стеклянным вводом. Детектор — пламенно-ионизационный. Колонку заполняли апиезоном К (20%) на кизельгуре. Скорость газа-носителя (азота) [c.189]

    В импульсном каталитическом микрореакторе (рис. 123) [15] через систему пропускают с постоянной скоростью газ-носитель (инертный газ или один из реагентов). В газ-носитель до реактора вводят реагент. Из реактора газ-носитель поступает в термостатированную колонку газового хроматографа и затем в детектор. Метод позволяет за короткий срок оценить относительную активность и селективность большого числа катализаторов при различных температурах. [c.291]

    Колонки, применяемые в газовой хроматографии, могут быть прямые, Ш-, и-образные или в форме спирали стеклянные, металлические или пластмассовые. Обычно длина колонок, заполненных твердым носителем, составляет 1 —10 м, диаметр колонок— 3—5 мм. [c.192]

    Основной качественной характеристикой вещества, анализируемого методом газовой хроматографии, является его объем удерживания Уд (в мл), равный объему газа-носителя, который проходит через колонку до момента появления на хроматограмме максимума пика этот объем определяют по формуле  [c.94]

    Проявительный метод — наиболее распространенный метод газовой хроматографии. Поэтому в дальнейшем рассматривается преимущественно проявительный анализ. Существенным его достоинством является возможность практически полного разделения на составляющие компоненты. Недостаток метода состоит в том, что вследствие разбавления компонентов смеси газом-носителем значительно уменьшается концентрация веществ после вымывания их из колонки. Однако это компенсируется применением высокочувствительных детекторов. [c.11]

    На рис. И приведена принципиальная схема газового хроматографа. Газ-носитель из баллона 1 под давлением поступает в дозатор 2 (до-затор-испаритель служит для ввода пробы в поток газа-носителя) и последовательно проходит хроматографическую колонку 3 и детектор 4. Сигнал детектора усиливается (блок 6) и подается на потенциометр 7. Для испарения жидкой или, что реже, твердой пробы, в дозаторе поддерживается необходимая температура. [c.46]

    В процессе хроматографирования вещество распределяется между подвижной газообразной фазой и твердой неподвижной — адсорбентом. Вследствие движения подвижной фазы, называемой в газовой хроматографии газом-носителем, анализируемое вещество, находящееся также в газообразной фазе, переносится вдоль слоя адсорбента и постоянно вступает в контакт с новыми его участками. При этом устанавливается динамическое равновесие между веществом, адсорбированным твердой фазой, и находящимся в газообразной фазе. Участки адсорбента с адсорбированным веществом при даль- д нейшем движении подвижной фазы а. омываются затем чистым газом, не содержащим анализируемое вещество. При этом равновесие нарушается, происходит десорбция вещества и перенос его газом-носителем к новому участку адсорбента. [c.19]

    Детекторы транспортного типа. Современная высокоскоростная жидкостная хроматография требует высокочувствительных детекторов. Этой цели могли бы служить детекторы, разработанные для газовой хроматографии. Однако газ-носитель не детектируется применяемыми в газовой хроматографии детекторами, тогда как в жидкостной хроматографии в качестве элюента обычно служат органические вещества, детектируемые большинством известных типов детекторов. Поэтому сигнал, возникающий от элюента, будет заглушать более слабый сигнал определяемого вещества. Возникает необходимость предварительного удаления элюента на выходе из колонки. Этой цели служат так называемые транспортные детекторы, применяемые в основном для анализа органических соединений. [c.94]

    Газовая хроматография и ТСХ. Одно из интересных сочетаний ТСХ с газовой хроматографией описано Кайзером [22]. Пластинку, покрытую тонким слоем сорбента, помещают непосредственно под капилляр, из которого выходят газ-носитель и десорбированное вещество из газовой хроматографической колонки. Пластинку располагают так, что вещества по выходе из колонки попадают на стартовую линию и сорбируются (рис. 1У.18). По мере выхода веществ из колонки пластинку передвигают вдоль стартовой линии. [c.153]

    Хроматографические методы можпо различать по условиям проведения разделения газовый и жидкостный по механизмам разделения молекулярно-адсорбционный, ионообменный, распределительный. Существенное значение имеет форма проведения процесса и способ неремещення смеси вдоль сорбента. Перемещение смеси можно осуществить в проявительном режиме, когда вещество-носитель практически не сорбируется. Этот метод обычно используется в газовой хроматографии. Перемещение смеси может быть во фронтальном режиме, нри котором происходит последовательное выделение сначала наименее сорбируемого компонента. Распространен и вытеснительный режим, при котором исходная [c.288]


    В гл. I рассматривался вариант газовой хроматографии, в основе которого лежит селективная адсорбция компонентов разделяемой смеси твердой неподвижной фазой — адсорбентом. В распределительной газовой хроматографии решающим фактором разделения является селективная абсорбция компонентов смеси неподвижной жидкой фазой — абсорбентом. Для локализации неподвижной >йид-кой фазы и придания ей достаточной поверхности ее наносят на зерна твердого носителя, которым заполняется колонка (насадоч-ная колонка), или же на внутренние стенки тонких капилляров (капиллярная колонка). [c.170]

    Значительная доля этих затруднений отпадает, если оба процесса — химический и хроматографический, осуществить в одной установке. Такой прием получил название аналитической реакционной газовой хроматографии. В этом случае введенные в реактор вещества смеси полностью или частично реагируют, а продукты реакции и оставшиеся неизменными другие компоненты смеси уносятся потоком газа-носителя и поступают в хроматографическую колонку, в которой происходит разделение смеси. При этом значительно сокращается время анализа и исключаются потери вещества, возникающие при переносе из реактора в колонку. Аналитическая реакционная газовая хроматография получила большое распространение. [c.197]

    Газовая хроматография — наиболее разработанный в аппаратурном оформлении хроматографический метод. Прибор для газохроматографического разделения и получения хроматограммы называется газовым хроматографом. Принципиальная схема газового хроматографа приведена на рис. 5. Газ-носитель из баллона 1 непрерывно в течение всего опыта пропускается через всю систему дозатор, колонку, детектор, измеритель скорости. Дозатор 2 служит для ввода в хроматографическую колонку 3 газообразной, жидкой или твердой пробы анализируемой смеси. В двух последних случаях смесь одновременно должна быть испарена. [c.14]

    В газовой хроматографии величина Уи значительно меньше объема пропущенного газа-носителя, поэтому ро Срп, а объем чистого газа-носителя У г-н =У—Уи. [c.33]

    Разновидность хроматографии, в которой процесс протекает при сверхкритических условиях, вследствие чего газ-носитель ведет себя подобно жидкости, получила название флюидной хроматографии. По сравнению с газовой хроматографией низкого давления коэффициент распределения в этом случае определяется двумя факторами. Во-первых, как и в случае жидкостно-адсорбционной хроматографии, компоненты разделяемой смеси стремятся проходить в плотную фазу из-за сильного молекулярного взаимодействия в этой. фазе. Во-вторых, адсорбция веществ уменьшается по мере того, как подвижная фаза адсорбируется и конкурирует с молекулами анализируемого компонента за место на поверхности. Очевидно также, что на величину адсорбции оказывает влияние полярность критической фазы. [c.58]

    Теория газовой хроматографии сформулирована в соответствии с теорией разбавленных растворов. Это связано с тем, что разработка теории велась в рамках проявительного метода, в котором анализируемые вещества значительно разбавляются газом-носителем. Однако в газовой хроматографии возможны случаи, например, в любом из вариантов фронтального метода, когда разбавле- [c.144]

    Фронтальный метод газовой хроматографии был нами рассмотрен в гл. I. Хроматография без газа-носителя [79] основана на том же принципе. Однако этот вариант фронтального метода имеет свои особенности. Кроме того, хроматография без газа-носителя может осуществляться и в проявительном варианте. [c.145]

    Динамический метод заключается в пропускании через слой адсорбента тока газа и в фиксировании появления газа (пара) за слоем адсорбента, так называемого проскока , а в более точных работах—в измерении нараст 1ния концентрации газа за слоем адсорбента после проскока. Динамический метод широко применяется при адсорбции сильно адсорбирующегося компонента из смеси с слабо адсорбирующимся газом— носителем и вообще при адсорбционном анализе смесей. Некоторые варианты этого метода будут рассмотрены ниже в связи с газовой хроматографией (см. Дополнение). [c.458]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    Определение гидрофильно-липофильного баланса (Г Л Б) неиоцоген-ных деэмульгаторов методом обращенной газовой хроматографии. Для определения необходимы газовый хроматограф, микрошприц на 1 мкл, секундомер, вибратор, круглодонная колба емкостью 250 см, фарфоровая чашка, пористый носитель Хроматон N-ANHMDS , хлороформ и метанол, образцы индивидуальных нормальных углеводородов ( - g) для хроматографии, инертный таз. [c.155]

    Неподвижная фаза при хроматографии может быть твердой и жидкой. В соответствии с этим газовую хроматографию делят на газо-адсорбционную (неподвижная фаза — твердый адсорбент) и газо-жидкостную (распределительную) хроматографию, когда поры твердого инертного носителя заполняют жидкостью (в процессе хроматографии происходит абсорбция газа жидкостью). Аналогично жидкостную хроматографию делят на жидкостно-адсорбционную (неподвижная фаза — твердый адсорбент) и жидкостножидкостную, (обе фазы — жидкие), [c.176]

    Хроматограмма, записанная самописцем хроматографа, представляет зависимость сигнала детектора от времени пропускания элюента или от его объема. На рис. I 1.28 показаны зависимости сигналов дифференциального и интегрального детекторов, т. е, дифференциальная и интегральная хроматограммы. Линия / хроматограммы отвечает выходу из колонки чистого газа-носителя (в газовой хроматографии). Пик 2 указывает на присутствие в пробе несорбирующегося компонента. Пики 3 н 4 соответствуют компонентам анализируемой смесн. Пик ограничен фронтом и тылом. По линии фронта наблюдается возрастание концентрации вещества со временем до максимального значения, а по линии тыла оиа со временем уменьшается. Основными параметрами пика являются его высота и ширина. За высоту пика Л принимают расстояние от [c.180]

    Подача растворителя. В газовой хроматографии подача подвижной фазы —газа-носителя —осуществляется сравнительно просто подключением к установке баллона с сжатым газом. В жидкостной хроматографии для непрерывной подачи растворителя под давлением требуются специальные приспособления, создающие необходи- [c.85]

    К недостаткам метода следует отнести низкую производительность, связанную прежде всего с периодичностью процесса, а также низкую степень использования объема хроматографической колонки. Последнее связано с тем, что большая часть колонки заполнена инертным носителем, значительная часть объема которого не принимает участия в процессе массопередачи. Кроме того, каждое вещество занимает очень малый объем колонки. При переходе от периодической препаративной газовой хроматографии к непрерывной производительность может быть значительно увеличена. Здесь рассмотрен лишь вариант периодической препаративной хроматографии, т. е. применение проявительного метода в препаративной хроматографии. Для повышения производительности-метода увеличивают диаметр колонки, что дает возможность значительно увеличить объем пробы. [c.205]

    Второй метод основан на реакции взаимодействия гидроксильных групп, имеющихся на поверхности применяемых носителей, с силанизирующими реагентами. Эта идея была впервые использована для дезактивации твердых носителей в газовой хроматографии. В ЖЖХ силанизацию производят для химического закрепления неподвижной фазы на твердом носителе. Такие системы получили название связанных фаз. Так, например, Стюарт и Перри приготовили октадецилцелит , с которого органические вещества не смывались ни одним из органических растворителей. Промышленностью выпускаются силанизированные носители, которые с успехом применяются в ЖЖХ. Например, дурапакс , в котором поверхность пористого стекла силанизирована и содержит радикалы оксидипропионитрила, полизтиленгликоля с молекулярной массой 400 или н-октана. Эти вещества и служат неподвижной фазой. [c.215]

    В пособии рассматривается теория хроматографического процесса, даны теоретические основы выбора сорбентов, освещены теоретические аспекты различных вариантов газовой хроматографии капиллярной, вакантной, препаративной, хроматографии без газа-носителя и с программированием температуры. Специальная глава посвящена применению газовой хроматографии для изучения физико-химических свойств веществ. [c.2]

    Термохимический детектор устроен аналогично катарометру, юднако изменение электрического сопротивления нити в нем происходит за счет тепла, выделяющегося при сгорании анализируемых веществ на нагретой до высокой температуры платиновой нити, -являющейся одновременно чувствительным элементом детектора и катализатором реакции горения. Поэтому в качестве материала яити применяется только платина. Термохимический детектор прост ш удобен в обращении, достаточно чувствителен для обычной газовой хроматографии, сравнительно недорог. Однако его применение ограничено анализом только горючих веществ и необходимостью применения воздуха или даже кислорода в качестве газа-носителя. Кроме того, его чувствительность изменяется со временем, а продолжительность работы нити невелика. [c.106]

    Из всех вариантов газовой хроматографии наибольшее распрост-ранекие получил проявительный метод разделения и анализа сложных смесей в насадочных хроматографических колоннах. Однако для решения некоторых специфических задач, таких как определение микропримесей, анализ очень сложных смесей, экспрессный анализ и в ряде других случаев целесообразным оказывается применение некоторых вариантов, более или менее существенно отличающихся от общепринятого метода. Эти варианты могут осуществляться в рамках как проявительного, так и фронтального анализа. Из них наибольшее значение получили капиллярная хроматография, различные модификации хроматографии без газа-носителя, хроматермография и др. Некоторые варианты, например хроматермография и теплодинамический метод, были рассмотрены нами ранее. [c.137]

    К недостаткам метода следует отнести низкую производительность, связанную прежде всего с периодичностью процесса, а также низкую степень использования хроматографической колонки. Последнее связано с тем, что большая часть колонки заполнена инертным носителем, значительная часть объема которого не принимает участия в процессе массопередачи. Кроме того, каждое вещество занимает очень малый объем колонки. При переходе от периодической препаративной газовой хроматографии к непрерывной производительность может быть значительно увеличена. [c.150]


Библиография для Газовая хроматография газ-носитель: [c.235]   
Смотреть страницы где упоминается термин Газовая хроматография газ-носитель: [c.48]    [c.223]    [c.104]    [c.223]    [c.552]    [c.589]    [c.47]    [c.176]    [c.178]    [c.288]    [c.255]    [c.185]    [c.9]    [c.88]    [c.125]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.15 ]

Аналитическая химия Том 2 (2004) -- [ c.246 , c.248 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.15 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография газы-носители

Газовая хроматография твердый носитель

Газовая хроматография хроматографы

Колонка в газовой хроматографии полый капилляр с покрытым носителе

Король А. Н. Порошок полиэтилена — носитель для газовой хроматографии

Модифицирование поверхности носителя для газовой хроматографии

Носители для газовой и жидкостной хроматографии

Носители неподвижных фаз для газовой хроматографии

Препаративная газовая хроматография газы-носители

Приготовление носителя для газовой хроматографии

ТЕОРИЯ, НЕПОДВИЖНЫЕ ФАЗЫ И НОСИТЕЛИ ДЛЯ ГАЗОВОЙ ХРОМАТОГРАФИИ Рекомендации по представлению величин удерживания

Хроматограф газовый

Хроматография газовая

Хроматография газовая адсорбционная с реальным газом-носителем

Хроматография на носителях



© 2025 chem21.info Реклама на сайте