Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая хроматография газы-носители

    В отличие от газовой хроматографии, в которой подвижной фазой служит газ-носитель, выполняющий лишь функцию переносчика вешества и влияющего только на эффективность колонки, в жидкостной хроматографии в функцию подвижной фазы входит еще и влияние на селективность колонки. Это свойство подвижной жидкой фазы имеет первостепенное значение для ЖАХ, так как оно позволяет достигать оптимальных условий разделения не только выбором соответствующего селективно действующего адсорбента, что не всегда просто, но и подбором системы растворителей, действующих селективно. [c.79]


    В практике газовой хроматографии часто пользуются уравнением Ван-Деемтера, в котором Н выражается как функция линейной скорости газа-носителя а, а остальные величины представляются в виде постоянных коэффициентов. Кроме того, уравнение Ван-Деемтера не учитывает влияния а на эффективный коэффициент вихревой диффузии, вследствие чего член, определяющий действие вихревой диффузии, оказывается постоянным. Тогда уравнение Ван-Деемтера можно представить в следующем виде  [c.29]

    На рис. И приведена принципиальная схема газового хроматографа. Газ-носитель из баллона 1 под давлением поступает в дозатор 2 (до-затор-испаритель служит для ввода пробы в поток газа-носителя) и последовательно проходит хроматографическую колонку 3 и детектор 4. Сигнал детектора усиливается (блок 6) и подается на потенциометр 7. Для испарения жидкой или, что реже, твердой пробы, в дозаторе поддерживается необходимая температура. [c.46]

    В процессе хроматографирования вещество распределяется между подвижной газообразной фазой и твердой неподвижной — адсорбентом. Вследствие движения подвижной фазы, называемой в газовой хроматографии газом-носителем, анализируемое вещество, находящееся также в газообразной фазе, переносится вдоль слоя адсорбента и постоянно вступает в контакт с новыми его участками. При этом устанавливается динамическое равновесие между веществом, адсорбированным твердой фазой, и находящимся в газообразной фазе. Участки адсорбента с адсорбированным веществом при даль- д нейшем движении подвижной фазы а. омываются затем чистым газом, не содержащим анализируемое вещество. При этом равновесие нарушается, происходит десорбция вещества и перенос его газом-носителем к новому участку адсорбента. [c.19]

    Одним из главных компонентов процесса газохроматографического анализа является газ-носитель. Несмотря на то что применяемые в газовой хроматографии газы-носители являются, как правило, инертными, природа газа-носителя может оказывать значительное влияние как на характеристики детектора, так и на процесс разделения в хроматографической колонке. Некоторые типы детекторов в газовой хроматографии работают только с определенным типом газа-носителя, например аргоновый с Аг, гелиевый с Не. Другие имеют разную чувствительность при использовании различных газов-носителей, например детектор по теплопроводности (ДТП) с га. ми-носителями Не и N2 илн фото-ионизационный (ДФИ) с N2 и воздухом. Для третьих необходимо применение нескольких газов с целью идентификации анализируемых веществ, например для детектора плотности (ДП) — N2 и СО2 или смеси газов для обеспечения более высокой линейности для электронозахватного детектора (ДЭЗ) с импульсным питанием — Аг+5% СН4. [c.123]


    Эту проблему можно было бы решить пропусканием газа через счетчик, а не вокруг него. Однако гелий и азот как наиболее предпочтительные для газовой хроматографии газы-носители не подходят для заполнения счетчика. Если же в качестве газа-носителя использовать газ, более удобный для заполнения счетчика , то не только замедляется анализ или ухудшаются результаты, но и само детектирование выходящего вещества с помощью обычных ячеек, основанных на измерении теплопроводности , становится весьма затруднительным. [c.50]

    Хроматография является важным физико-химическим способом разделения веществ, который в общем виде основывается на различиях сорбционного равновесия на твердой фазе или на различном распределении вещества между двумя жидкими или между газообразной и жидкой фазами. Во многих случаях одновремен о эффективны как адсорбция, так и распределение. Распределение веществ осуществляется между подвижной и стационарной фазами. В качестве подвижных или движущихся фаз используются растворители или, в специальном случае газовой хроматографии, газ-носитель в качестве стационарных фаз — твердые адсорбенты или жидкости, фиксированные на твердом носителе. Особыми видами хроматографии являются ионообменная хроматография и способы разделения, основанные на использовании молекулярных сит или на фильтрации через гели. До сих пор широкое применение находит адсорбционная или распределительная хроматография в колонках, на бумаге, тонкослойная и газовая. [c.203]

    Действительно, в каждой адсорбционной зоне возможно также удерживание некоторого количества веществ, которые в соответствии с величиной их коэффициентов адсорбции должны расположиться в одной из нижележащих зон. Следовательно, происходит наложение адсорбционных зон. Для того чтобы адсорбционное разделение по зонам было более четкое, необходимо применение растворителя, а в случае газовой хроматографии — газо-носителя. Под действием растворителя или газа-носителя каждая зона продвигается по колонке. Одновременно происходит и процесс более четкого перераспределения компонентов по зонам. [c.6]

    Применяемые в газовой хроматографии газы-носители имеют вязкости, различающиеся довольно значительно. Наименьшей [c.25]

    При протекании анализируемого газа (с газом-носителем) через измерительную кювету интерферометра между лучом, проходящим через измерительную оптическую камеру, и лучом, проходящим через сравнительную оптическую камеру, заполненную при использовании интерферометра в газовой хроматографии газом-носителем, создается дополнительная разность хода лучей. [c.105]

    Работа и конструкция отдельных узлов и систем хроматографа Цвет-1-64 . Панель подготовки газов. Она состоит из трех отдельных газовых линии газа-носителя, водорода и воздуха. Газовая схема панели подготовки газа (ППГ) представлена на рис, 70. Линия газа-носи-теля состоит из вентиля тонкой регулировки, образцового манометра и фильтра. [c.174]

    Аппаратура, Принципиальная схема газового хроматографа представлена на рис. 3.3. Подвижная фаза (газ-носитель) непрерывно подается из баллона 1 через редуктор 2 в хроматографическую установку. Анализируемую пробу вводят дозатором 4 либо в поток газа-носителя, либо через резиновую мембрану в испаритель 3. Из испарителя проба переносится газовым потоком в хроматографическую колонку 5. Изменение состава выходящей из колонки смеси фиксируется детектором 7 и записывается на ленте регистратора 9. Хроматографическая колонка и детектор помещены в термостаты 5 и 5. Дозатор предназначен для введения точного количества образца пробы в хроматограф. В качестве дозатора используют специальное дозирующее устройство или микрошприц. Объем вводимой пробы 0,1 мкл — 0,1 мл для жидких и 0,5—20 мл для газообразных проб. [c.192]

    Различают две разновидности газовой хроматографии газ -твердое вещество (абсорбционная) и газ - жидкость (газожидкостная). Эффективность разделения в газожидкостной хроматографии определяется не процессами сорбции-десорбции газа, а степенью растворения газообразных компонентов анализируемого вещества в жидкой нелетучей пленке. В качестве жидкой фазы используют вазелиновое, силиконовое масла, эфиры фталевой кислоты в качестве твердых носителей - вещества с развитой поверхностью, но малой пористостью, чтобы исключить абсорбцию газа (каолин, диатомиты и др.) [5,6]. [c.61]

    Это разновидность метода хроматографии, в котором неподвижной фазой является малолетучая жидкость, нанесенная на твердый адсорбент. Основой разделения служит распределение веществ пробы между пленкой жидкости и газовой фазой (газ-носитель). Скорость движения каждого компонента зависит от его фугитивности и взаимодействия с жидкой фазой. [c.30]

    В табл. 11.12 приведены некоторые характеристики и применяемость наиболее часто используемых в газовой хроматографии газов. Кроме перечисленных в табл. 11.12 газов иногда для подавления сорбционной активности носителя в качестве газа-носителя используют пары воды. В этом случае применяют специальные установки для стабильной подачи воды — генераторы пара и дифференциальный пламенно-ионизационный детектор (ДПИ), оптимизированный для работы с парами воды. Количество воды в резервуарах должно обеспечивать по крайней [c.125]


    В последнее время все большее применение получает хроматографический метод анализа. Благодаря разработке быстро анализирующих автоматических приборов, способных отбирать и анализировать газ непосредственно из производственного иоток.ч, ) также вследствие высокой точности анализа и возможности опре деления большого числа компонентов, этот метод может быть успешно применен для оперативного автоматизированного управления процессом. Определение состава газов хроматографическим методом основано на адсорбции компонентов газа поверхностью адсорбентов. В качестве адсорбента можно применять активированный уголь, силикагель, алюмогель, так называемые молекуляр иые сита (газовая хроматография) и нелетучие жидкости, нанесенные на инертный носитель, например толченый кирпич, гравий (газо-жидкостная хроматография). [c.88]

    Газовая хроматография применяется для разделения смесей газообразных или легкоиспаряемых жидких и твердых веществ. Принцип метода подобен жидкостной хроматографии. Разделяемую смесь разбавляют газом-носителем (Н2, N2, Не) и вводят в адсорбционные колонны. Газ-носитель является одновременно растворителем и элюентом. В качестве сорбентов используют тонкие порошки силикатных материалов, которые могут быть чистыми (газо-адсорбцион-ная хроматография) или покрытыми пленкой нелетучей жидкости (газо-жидкостная хроматография). Используют также капилляры, покрытые внутри пленкой нелетучей жидкости (капиллярная хроматография). Газ-носитель постепенно десорбирует компоненты [c.18]

    Открытая в 1903 г. русским ученым М. С. Цветом [1] хроматография является разновидностью динамического сорбционного процесса в двухфазной системе, где смесь веществ, движущаяся вместе с Потоком растворителя через пористую среду, разделяется на отдельные компоненты в соответствии с их сорбционной активностью. По типу подвижной фазы хроматография делится на газовую и жидкостную, а по разнообразию сорбентов, используемых в качестве неподвижной фазы, — на распределительную (жидкость наносится на инертный твердый носитель), адсорбционную (используется сорбент с развитой внутренней поверхностью), ионообменную (на ионитах) и гель-проникающую (на макропористых инертных сорбентах). Газовая хроматография (газо-адсорбционная, газо-жидкостная) применяется для разделения летучих веществ, жидкостная хроматография — для анализа и фракционирования термолабильных и нелетучих веществ. [c.10]

    Разделение в газовой хроматографии основано на различном распределении молекул разделяемых компонентов между движущейся газовой фазой (газ-носитель) и неподвижной фазой (сорбент в колонке). Между этими фазами для каждого компонента анализируемой смеси в колонке устанавливается динамическое равновесие. Под действием потока газа-носителя компоненты анализируемой смеси с разными скоростями перемещаются вдоль хроматографической колонки. Скорость этого перемещения определяется для каждого компонента константой его распределения (см. ниже) между газовой и неподвижной фазами. Скорость движения хроматографической зоны обратно пропорциональна константе распределения, т.е. хорошо сорбируемые компоненты передвигаются вдоль слоя сорбента медленнее, чем плохо сорбируемые [1]. [c.12]

    В основе методов газовой хроматографии лежат процессы распределения компонентов смеси между двумя фазами инертной газовой фазой (газ-носитель) и неподвижной (твердое вещество или жидкость). Если неподвижной фазой является твердое вещество, [c.143]

    Для соединения с газовым хроматографом реактор встраивают в соединительную линию, которая используется обычно для подачи в хроматограф газа-носителя. Если в продуктах реакции есть малолетучие компоненты, то линии, соединяющие реактор с хроматографом, необходимо подогревать этот нагрев можно осуществить, используя электронагревательную ленту, намотанную на соединительную трубку. [c.34]

    Газовая хроматография подобна разделительной хроматографии в колонке, с той разницей, что вместо жидкого растворителя в ней используется подвижная газовая фаза, газ-носитель. Тем самым область ее применения распространяется на газообразные или по возможности испаряющиеся без разложения вещества. Этим способом можно разделять также и летучие продукты пиролиза, что дает возможность судить о составе исходного вещества. [c.212]

    Основой хроматографических методов является процесс распределения компонентов смеси между двумя фазами с последующим их разделением. Поскольку анализируемая смесь обычно находится в виде одной фазы (газ, жидкость), вторую фазу приходится создавать искусственно. Чаще, однако, приходится предварительно создавать или вводить обе фазы, между которыми распределяются компоненты смеси. Так, например, в газожидкостной хроматографии, о которой главным образом и будет идти речь в настоящей книге, инертная газовая фаза (газ-носитель) и неподвижная жидкость вводятся специально независимо от того, является ли анализируемая смесь первоначально газом или жидкостью, она распределяется между этими двумя фазами в виде газа (пара) и жидкого раствора. Точно так же в адсорбционной хроматографии распределение введенной пробы осуществляется между твердым адсорбентом и движущейся жидкой фазой. Механическое разделение происходит в обоих случаях вследствие перемещения подвижной фазы вдоль неподвижной. [c.26]

    Так же как и в классическом варианте — жидкостной хроматографии, где вещество перемещается по колонке потоком жидкости, в зависимости от характера сорбции различают две разновидности газовой хроматографии газо-адсорбционную и газо-абсорбционную, или, как ее чаще называют, газо-жидкостную хроматографию (ГЖХ). В первом случае в качестве сорбента используют адсорбенты, например активированные угли, окись алюминия, силикагель, синтетические цеолиты. В газо-жидкостной хроматографии сорбентом является малолетучее органическое вещество (как правило, жидкость), нанесенное на твердый инертный носитель с достаточно большой поверхностью. В данном случае происходит не адсорбция вещества поверхностью адсорбента, а растворение (абсорбция) в нанесенном на твердом носителе веществе, которое называется стационарной фазой. Количество стационарной фазы, нанесенной на твердый инертный носитель, колеблется от 1 до 30% от массы носителя, однако чаще всего в ГЖХ применяются сорбенты с содержанием стационарной фазы 10%. В качестве твердых инертных носителей в ГЖХ применяются природные диатомиты, различные диатомитовые кирпичи, крупнопористые стекла и даже некоторые [c.352]

    Анализ осуществляли на газовом хроматографе со стеклянной колонкой н стеклянным вводом. Детектор — пламенно-ионизационный. Колонку заполняли апиезоном К (20%) на кизельгуре. Скорость газа-носителя (азота) [c.189]

    В импульсном каталитическом микрореакторе (рис. 123) [15] через систему пропускают с постоянной скоростью газ-носитель (инертный газ или один из реагентов). В газ-носитель до реактора вводят реагент. Из реактора газ-носитель поступает в термостатированную колонку газового хроматографа и затем в детектор. Метод позволяет за короткий срок оценить относительную активность и селективность большого числа катализаторов при различных температурах. [c.291]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Основной качественной характеристикой вещества, анализируемого методом газовой хроматографии, является его объем удерживания Уд (в мл), равный объему газа-носителя, который проходит через колонку до момента появления на хроматограмме максимума пика этот объем определяют по формуле  [c.94]

    Коукс, Тобин и Эмметт первыми указали на возможность применения счетчика Гейгера, последовательно соединенного с хроматографической колонкой. Эванс и Уиллард разделяли методом газовой хроматографии соединения, меченные радиоактивным галогеном, и устанавливали радиоактивность вымываемого газа счегчиксм, чувствительным к жестким 3- и 7-лучам. В этих типах газовых хроматографов газ-носитель пропускался под счетчиком с тонкими стенками. К сожалению, два наиболее ценных для органической химии радиоизотопа имеют очень слабое излучение, которое в случае трития совсем не проникает через стенку счетчика, а в случае углерода С —проникает очень слабо. [c.50]

    На рис. 6 [15] показана схема простого газового хроматографа. Газ-поситель из баллона (1) через редуктор (2), регулятор давления (3) и стабилизатор потока 4) поступает в сравнительную ячейку детектора 6) и затем через устройство для ввода пробы (7) в хроматографическую колонку (9), расположенную вместе с детектором в термостате (10). Давление на входе колонки измеряется манометром (5), объемняя скорость газа-посителя периодически контролируется пенным измерителем скорости (22). Проба шприцом (8) вводится в поток газа-носителя перед хроматографической колонкой через устройство для ввода пробы (7). Поток газа-носителя переносит пробу в хроматографическую колонку (9), где и происходит разделение ее компонентов на отдельные зоны. Разделенные вещества (хроматографические зоны) поступают в детектор (6), который определяет концентрацию (или поток вещества) анализируемых компонентов в газе-носителе. Сигнал детектора, величина которого пропорциональна концентрации (или потоку вещества), автоматически регистрируется потенциометром (12). [c.19]

    На рис. ХП1,1 приведена одна из распространенных газовых схем хроматографа. Газ-носитель проходит сначала через сравнительную ячейку детектора, наГгример катарометра, через дозатор, колонку и измерительную ячейку детектора. Если используют чистый газ-носитель, то это проявительный вариант хроматографии (1). Если же через колонку пропускают газ-носитель, Содержащий те же компоненты, что и анализируемая смесь (вводимая, как обычно, в дозатор), но в меньших концентрациях, то будет реализоваться вариант дифференциальной хроматографии (2). В этом случае на хроматограмме будут зарегистрированы пики, соответствующие разности концентраци1 компонентов в обеих смесях. Если концентрация компонентов в газе-носителе будет равна концентрации компонентов в анализируемой смеси, то на выходе сигнала не будет (3). Если же концентрация компонентов в анализируемой смеси будет меньше, чем в газе-носителе, то зарегистрируются отрицательные пики, и если вводится вообще чистый газ-носитель, а через колонку продувается анализируемая смесь, то на выходе будет получаться такая же хроматограмма, как и в проявительном варианте, но пики будут с обратным сигналом (4). Это и есть вакантная хроматограмма. Жуховцким и Туркельтау- [c.181]

    Газовая схема представлена на рис. 2 и ее можно осуществить на любом хроматографе с двумя независимыми газовыми потоками. Газ-носитель из баллона (/) поступает в первый испаритель (5) на вход насадочиой колонки (5), часть его сбрасывается через байпас (7). Далее на выходе из насадочной колонки устанавливается тройник (9), соединенный с капиллярной колонкой 10) и вторым испарителем (б), в который также подается газ-носитель из баллона по обычной схеме [c.31]

    Динамический метод заключается в пропускании через слой адсорбента тока газа и в фиксировании появления газа (пара) за слоем адсорбента, так называемого проскока , а в более точных работах—в измерении нараст 1ния концентрации газа за слоем адсорбента после проскока. Динамический метод широко применяется при адсорбции сильно адсорбирующегося компонента из смеси с слабо адсорбирующимся газом— носителем и вообще при адсорбционном анализе смесей. Некоторые варианты этого метода будут рассмотрены ниже в связи с газовой хроматографией (см. Дополнение). [c.458]

    В основе метода лежит принцип непрерывной хроматографии или разделения газопротивоточным распределением. Принцип указанного метода разделения виден из рис. 7. Твердый материал (адсорбент или инертный носитель, смоченный жидкостью) движется в колонне сверху вниз. Б среднюю часть колонны в точке 3 подается газовая смесь, состоящая из двух компонентов — К1 ш К . В точке 1, ниже ввода газовой смеси, подается инертный газ-носитель. Еслп газовая смесь, подлежащая разделению, содержит инертные компоненты, применение газа-носителя исключается. [c.34]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    На установке применяется хроматограф ХПА-4 для автоматического непрерывного определения и регистрации химического состава газовых потоков. Принцип действия хроматографа основан на физическом разделении газовой смеси на составляющие компоненты, при котором компоненты распределяются между двумя фазами подвижной и неподвижной. Разделение компонентов происходит за счет различной поглощаемости или неодинакового растворения компонентов газовой смеси, проходящей через слой неподвижного сорбента. В результате скорость движения газов меняется в соответствии со степенью поглощения каждого газа. Чем больше сорбируе-мость газа, тем больше торможение и меньше его скорость движения. С течением времени в силу различия в скоростях газы отделяются друг от друга. Проба продувается через слой сорбента при помощи газа-носителя. При постоянном расходе газа-носителя и постоянной температуре время выхода из хроматографической колонки компонента всегда постоянно, поэтому может быть установлена определенная очередность выхода компонентов, являющаяся качественным показателем при хроматографическом анализе. [c.92]

    Неподвижная фаза при хроматографии может быть твердой и жидкой. В соответствии с этим газовую хроматографию делят на газо-адсорбционную (неподвижная фаза — твердый адсорбент) и газо-жидкостную (распределительную) хроматографию, когда поры твердого инертного носителя заполняют жидкостью (в процессе хроматографии происходит абсорбция газа жидкостью). Аналогично жидкостную хроматографию делят на жидкостно-адсорбционную (неподвижная фаза — твердый адсорбент) и жидкостножидкостную, (обе фазы — жидкие), [c.176]

    Хроматограмма, записанная самописцем хроматографа, представляет зависимость сигнала детектора от времени пропускания элюента или от его объема. На рис. I 1.28 показаны зависимости сигналов дифференциального и интегрального детекторов, т. е, дифференциальная и интегральная хроматограммы. Линия / хроматограммы отвечает выходу из колонки чистого газа-носителя (в газовой хроматографии). Пик 2 указывает на присутствие в пробе несорбирующегося компонента. Пики 3 н 4 соответствуют компонентам анализируемой смесн. Пик ограничен фронтом и тылом. По линии фронта наблюдается возрастание концентрации вещества со временем до максимального значения, а по линии тыла оиа со временем уменьшается. Основными параметрами пика являются его высота и ширина. За высоту пика Л принимают расстояние от [c.180]

    Рассмотрим физико-химические основы сущности хроматографического процесса разделения на примере газо-жидкостпой хроматографии, когда смесь анализируемых компонентов, находящихся в газовой фазе, проходит вместе с газом-носителем вдоль нелетучей жидкости. [c.289]


Смотреть страницы где упоминается термин Газовая хроматография газы-носители: [c.10]    [c.308]    [c.26]    [c.552]    [c.589]    [c.52]    [c.47]    [c.178]    [c.49]    [c.288]   
Лабораторная техника органической химии (1966) -- [ c.492 , c.494 , c.496 , c.512 , c.513 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография газ-носитель

Газовая хроматография хроматографы

Препаративная газовая хроматография газы-носители

Хроматограф газовый

Хроматография газовая

Хроматография газовая адсорбционная с реальным газом-носителем

Хроматография на носителях



© 2024 chem21.info Реклама на сайте