Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атмосферная коррозия алюминия

    Благодаря хорошей стойкости к атмосферной коррозии алюминий обычно используют без дополнительных защитных мер. Однако прп необходимости усилить защитные свойства естественной окисной пленки можно путем анодирования. Еще более высоких результатов можно достичь с помощью защитных покрытий. Адгезия красок к поверхности алюминия обычно хорошая, правильно подобранный для морских условий состав покрытия обеспечивает долговременную дополнительную защиту металла. Опыт эксплуатации алюминиевых конструкций показывает, что в дальнейшем возобновление покрытия приходится производить примерно вдвое реже, чем при использовании той л<е красочной системы для защиты стальной конструкции. [c.132]


    Скорость атмосферной коррозии возрастает при повышении влажности воздуха. Значение относительной влажности, при которой наблюдается резкое увеличение скорости коррозии, принято называть критической влажностью. В присутствии 1 %-ного сернистого газа критическая влажность для дюралюминия Д1б и сплавов В95, АМг-ЗМ, АМг-5ВМ, АМц составляет 75%. Однако в присутствии сернистого газа и хлоридов некоторое увеличение скорости коррозии алюминиевых сплавов наблюдается при относительной влажности 42%. Если же воздух не загрязнен, резкого увеличения скорости коррозии дюралюминия не наблюдается и При 90% относительной влажности. Продукты атмосферной коррозии алюминия менее гигроскопичны, чем продукты коррозии цинка, железа, меди. [c.57]

    При контакте с другими металлами атмосферная коррозия алюминия и его сплавов локализуется на небольшой поверх->юсти вблизи границы контакта металлов. Скорость коррозии в промышленной атмосфере на этих участках для большинства сплавов алюминия при контакте их со сталями, бронзами составляла 0,07—0,15 г/. 2 сутки, в морской атмосфере — 0,3 г/м сутки. В парах со сплавами магния, оцинкованной и кадмированной сталью сплавы алюминия являются катодами.  [c.63]

    Ингибитор атмосферной коррозии алюминия, олова, никеля, серебра [242, 257], стали [236, 257] не полностью защищает медь [236, 242], латунь, цинк, кадмий, свинец [242]. [c.140]

    Ингибитор атмосферной коррозии алюминия, никеля [206, 239]. Неполностью защищает сталь и медь. [c.147]

    Ингибитор атмосферной коррозии алюминия, цинка, никеля, не защищает сталь, медь, латунь 206]. [c.148]

    Образующиеся продукты атмосферной коррозии металлов, как правило, остаются на металле, хорошо с ним сцепленными, и оказывают большее (на свинце и алюминии) или меньшее (на никеле и цинке) защитное действие, уменьшая скорость коррозии со временем (рис. 271). Ускорение коррозии железа в начальный период обусловлено большой гигроскопичностью продуктов коррозии (ржавчины), защитное действие которых начинает сказываться только при значительной толщине. [c.381]

    На рис. 274 приведена карта Советского Союза по атмосферной коррозии железа применительно к условиям сельской местности. Аналогичные карты составлены также для цинка, кадмия, меди и алюминия. Влияние загрязненности атмосферы и других факторов на скорость атмосферной коррозии металлов может быть учтено введением соответствующих поправочных коэффициентов, что позволяет, по А. И. Голубеву и М. X. Кадырову, прогнозирование коррозии металлов в атмосферных условиях. [c.383]


    Характер развития атмосферной коррозии во времени у разных металлов заметно отличается вследствие неодинаковости защитных свойств образующихся продуктов коррозии. Свинец и алюминий образуют хорошую защитную пленку из продуктов коррозии, и зависимость величины коррозии от времени для этих металлов имеет вид затухающей логарифмической кривой (рис. 138). Защитные свойства продуктов коррозии меди, олова и особенно никеля несколько ниже. Скорость коррозии цинка по мере образования слоя продуктов коррозии сначала уменьшается во времени,. а затем остается постоянной. Для железа в [c.180]

    Наиболее распространенным способом защиты от атмосферной коррозии является применение соответствующих металлов и сплавов, достаточно устойчивых в промышленных эксплуатационных условиях. Повышение коррозионной устойчивости обычных марок углеродистых сталей достигается их легированием более благородными элементами или созданием на их поверхно сти пассивного состояния. Примером получения сплавов, более стойких в атмосферных условиях, чем обычные черные металлы, является легирование последних медью, хромом, никелем, алюминием и др. [c.182]

    При получении покрытия из расплава в ванну с расплавленным алюминием обычно добавляют кремний, чтобы затруднить образование слоя хрупкого сплава. Полученные из расплава покрытия используют для повышения устойчивости к окислению при умеренных температурах таких изделий, как отопительные устройства и выхлопные трубы автомобилей. Они стойки к действию температуры до 480 °С. При еще более высоких температурах покрытия становятся огнеупорными, но сохраняют защитные свойства вплоть до 680 °С [21]. Использование алюминиевых покрытий для защиты от атмосферной коррозии ограничено вследствие более высокой стоимости по сравнению с цинковыми, а также из-за непостоянства эксплуатационных характеристик. В мягкой воде потенциал алюминия положителен по отношению к стали, поэтому покрытие является коррозионностойким, В морской и некоторых видах пресной воды, особенно содержащих С1" и SO4", потенциал алюминия становится более отрицательным и может произойти перемена полярности пары алюминий—железо. В этих условиях алюминиевое покрытие является протекторным и катодно защищает сталь. Показано, что покрытие из сплава А1—Zn, состоящего из 44 % Zn, 1,5 % Si, остальное — Al, имеет очень высокую стойкость в морской и промышленной атмосферах. Оно защищает также от окисления при повышенных температурах. [c.242]

    М-1 (ТУ 6-02-1132—88) — соль циклогексиламина и синтетических жирных кислот фракции С - з. Эго пастообразное вещество светло-коричневого цвета, растворимое в воде, этаноле, бензине, индустриальном масле. Ингибитор М-1 предназначен для зашиты от атмосферной и микробиологической коррозии изделий из стали, чугуна, алюминия и его сплавов. Он обеспечивает защиту до 5 лет в зависимости от способа упаковки и условий хранения изделий. Ингибитор атмосферной коррозии М-1 применяют в виде 5-10 %-ных растворов в бензине и этаноле 1—5 %-ных растворов в воде  [c.374]

    В отличие от самого алюминия его сплавы характеризуются высокой удельной прочностью, приближающейся к высокопрочным сталям. Основные другие достоинства всех сплавов алюминия — это их малая плотность (2,5—2,8 г/см ), удовлетворительная стойкость против атмосферной коррозии, сравнительная дешевизна и простота получения и обработки. Эти сплавы пластичнее сплавов магния и многих пластмасс, стабильны по свойствам. Основными легирующими элементами являются Си, Mg, 31, Мп, Хп, которые вводят в алюминий главным образом для повышения его прочности. Типичными представителями сплавов алюминия являются дуралюмины, относящиеся к сплавам системы Л1—Си—Mg. Высокопрочные сплавы алюминия относятся к системам Л1—7п—Mg—Си, содержащим добавки Мп, Сг, 2т. Из других сплавов широко известны силумины, в которых основной добавкой служит кремний, магналий (сплав алюминия с 9,5—11,5% магния). Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, изготовлении строительных конструкций, заклепок, посуды и во многих других отраслях промышленности. [c.633]

    Алюминий, содержащийся в некоторых видах латуни, повышает их сопротивление к атмосферной коррозии. Как это можно объяснить  [c.162]

    Атмосферная коррозия протекает с превалирующей кислородной деполяризацией. При этом такие металлы, как алюминий, железо, цинк, которые корродируют при полном погружении в достаточно кислые растворы с водородной деполяризацией, под тонкой пленкой влаги даже в сильно загрязненной кислыми газами атмосфере корродируют со значительной долей кислородной деполяризации. [c.5]

    Кристаллический порошок светло-желтого цвета, нерастворим в воде. Малотоксичен. Относится к летучим ингибиторам атмосферной коррозии. Температура плавления 230—240° С. Защищает от атмосферной коррозии серебро, никель, олово, оксидированный магний, медь. Не полностью защищает алюминий, кадмий, железо. На упаковочные материалы, деревянную тару, краски, органические покрытия, текстиль, кожу отрицательного действия не оказывает [c.105]


    Масло трансформаторное 50. .. 10 Ингибитор контактного действия. Защищает от атмосферной коррозии изделия из стали, чугуна, алюминия. Цветные металлы не защищает, но и не вызывает коррозии. На текстиль, дерево, пластик и бумагу отрицательного влияния не оказывает [c.107]

    Антикоррозионная бумага марки ХЦА 14-80 на основе хромата циклогексиламина обеспечивает защиту от атмосферной коррозии меди и ее сплавов, стали различных марок, алюминия и его сплавов на срок 3—5 лет. Однако бумага марки ХЦА не защищает цинк и кадмий, что является наряду с относительно высокой токсичностью существенным недостатком указанного вида антикоррозионной бумаги, препятствующим ее использованию для консервации и упаковки большинства современных изделий, для которых широко используется кадмирование поверхности. Технология производства антикоррозионной бумаги ХЦА практически не отличается от таковой для бумаги марки НДА и имеет присущие последней недостатки, связанные с нанесением хромата циклогексиламина на [c.123]

    В настоящее время разрабатываются новые виды антикоррозионных бумаг с использованием в качестве ингибиторов других производных нитро- и динитробензойной кислот, таких как нитробензоат цикло- и дициклогексиламина, нитро- и динитробензоат пиперидина, динитробензоат гексаметиленимина, нитро- и динитробензоат диэтиламина, морфолина, гуанидина. Это позволит расширить сырьевую базу производства универсальных антикоррозионных бумаг и обеспечить потребителей упаковочными бумагами, пригодными для защиты от атмосферной коррозии серебра, никеля, олова, алюминия, меди, железа, хромированного цинка и кадмия, оксидированного магния и т. д. [c.126]

    Перспективны в зтом отношении производные низкомолекулярных аминов типа ИФХАН, летучесть которых достигает 13,3 Па [ 144). Высокая летучесть указанных соединений предъявляет высокие требования к технологическому оформлению процесса производства антикоррозионной бумаги. Первые опытно-промышленные партии антикоррозионной бумаги с использованием в качестве ингибитора ИФХАН-1 в количестве 6—8 г/м показали высокую эффективность защиты от атмосферной коррозии серебра, олова, никеля, алюминия, магния, [c.128]

    Бронзы. Наиболее широко применяют оловянистые бронзы, содержащие 8—14% олова, алюминиевые бронзы с содержанием до-14% алюминия, кремнистые с 2—3% кремния и 1—1,5% марганца. Они не искрят при трении или ударах. Детали из них можна получить методом литья. В условиях атмосферной коррозии бронзы характеризуются высокой стойкостью. Они проявляют коррозионную стойкость в неокисляющих растворах солей и кислот. [c.36]

    Химическое оксидирование стали и алюминия позволяет получать сплошные слои с малой пористостью и хорошей адгезией, которые имеют защитные свойства в атмосфере с низкой степенью коррозионной агрессивности. Сталь подвергают, например, так называемому воронению, которое в сочетании с консервирующими средствами обеспечивает удовлетворительную защиту стальных изделий от сухой атмосферной коррозии. Окисные слои на алюминии, полученные химическим оксидированием, существенно повышают стойкость не только самого алюминия, но и лакокрасочных систем, нанесенных на окисный слой. [c.74]

    Алюминий, хром, кремний и цинк используют в качестве диффузионных покрытий для защиты стали от атмосферной коррозии и(или) окисления под воздействием высоких температур. Диффузионные покрытия хромом и бором способствуют улучшению сопротивляемости износу. [c.104]

    Алюминий в чистом виде проявляет высокую стойкость атмосферной коррозии благодаря тому, что при воздействии воздуха образуется тонкая прочная пленка окиси. Окисная пленка инертна, и с ее образованием быстро прекращается дальнейшая коррозия на поверхности металла. В среде, загрязненной промышленными отходами, скорость коррозии алюминия, установленная в среднем за шестилетний период, составляет 2—5 мкм в год, но скорость проникновения в течение шестого года эксплуатации составляет одну четвертую от первого года. Для сравнения отметим, что малоуглеродистая сталь корродирует со скоростью 20—25 мкм в год, и скорость распространения коррозии в основном постоянна и не зависит от времени ее протекания. [c.107]

    Обычно вначале выявляют материалы, непригодные для использования в качестве покрытий, с учетом фактора окружающей среды. Так, из-за избыточной скорости коррозии алюминий в качестве покрытия неприемлем в сильной щелочной среде, алюминий и свинец — в среде с высоким содержанием хлорида алюминия, медь и цинк — в кислотной среде. Алюминий, медь, никель и олово хорощо противостоят атмосферным воздействиям, а алюминий и никель, кроме того, — нагреванию при повыщен-ной температуре, но они подвержены коррозии при ограниченном доступе кислорода. Никель, медь и олово устойчивы в пресной и морской воде, алюминий менее устойчив, особенно при высоком содержании хлоридов в воде. Во влажной среде, содержащей пары органических веществ, на цинк следует наносить покрытие кадмия. Алюминий, никель и олово имеют хорошую сопротивляемость к действию кислот. Свинец сохраняет [c.123]

    Информация об атмосферной коррозии ряда металлов была получена с помощью системы коррозионных датчиков, позволяющих непрерывно регистрировать ее развитие в зависимости от относительной влажности, температуры, длительности увлажнения металла фазовыми слоями влаги и содержания агрессивных примесей в атмосфере. По метеорологическим параметрам были получены исходные данные для расчета скорости коррозии алюминия и его сплавов в любой климатической зоне [16—18]. [c.6]

    Наблюдается довольно хорошее совпадение расчетных и фактических величин коррозии. Средняя относительная ошибка расчетных величин коррозии изменяется от 20% (для малоуглеродистой стали) до 35% (для алюминия). В табл. 11 приведены полученные таким методом рекомендуемые справочные данные о скорости атмосферной коррозии низкоуглеродисты сталей. [c.86]

    В последние годы ускоренные испытания, имеющие своей целью прогнозирование коррозионной стойкости металлов или покрытий, получили дальнейшее развитие. В табл. 12 сопоставлены наблюдаемые и рассчитанные из результатов ускоренных испытаний скорости коррозии цинка, кадмия и алюминия в различных климатических зонах. В расчетах использовали вышеприведенные модели атмосферной коррозии. Полученный к настоящему времени экспериментальный материал [84, 85] свидетельствует о хорошей корреляции рассчитанных по результатам ускоренных испытаний и реально наблюдаемых величин коррозии. [c.88]

    Преимущественный контроль скоростью катодной реакции характерен для коррозии металлов в кислых средах, в нейтральных электролитах и атмосферных условиях, а также для коррозии амфотерных металлов в щелочных средах. Контроль скоростью протекания анодной реакции характерен для металлов, способных переходить в пассивное состояние. Смешанный контроль — контроль скоростями обеих реакций — наиболее распространен в практике и встречается в различных условиях, например при коррозии алюминия в нейтральных электролитах. [c.17]

    Атмосферной коррозии подвергаются металлоконструкции. Методами борьбы с атмосферной коррозией являются окраска и антикоррозионная металлизация. Срок службы лакокрасочных покрытий составляет 3—4 года, покрытий из напыленного металла — 8—10 лет. Для напыления используются в основном цинк и алюминий, которые имеют относительно низкую температуру плавления. Толщина напыленного слоя обычно равна 50—500 мкм. Напыленный слой дополнительно окрапшвается. [c.49]

    Известно, что присадка меди в значител1>ной степени повышает коррозионную стойкость углеродистых сталей даже при не-больнюм ее содержании. Положительное влияние добавки меди иа устойчивость стали к атмосферной коррозии проявляется более заметно, если в состав стали, кроме меди, ввести Сг, Л1 или Р. Хром и алюминий, как известно, повышают склонгюсть стали к анодному пассивированию. Положительное влияние фосфора, по-виднмому, может быть объяснено переходом этого элемента из металла в поверхностный слой влаги и образованием защит- [c.182]

    Прп исследовании пластичных см 13ок, получаемых загущением машинного масла стеаратами алюминия и свинца, было установлено, что введение стеариновой кислоты повышает способность этих смазок защищать металлы от атмосферной коррозии. [c.184]

    Для защиты высокопрочных сплавов наиболее широко применяют плакирование. В качестве плакирующего слоя используют чистый алюминий или сплав алюминия с 1% 2п. Толщина плакирующего слоя составляет от 2 до 7,5% от толщины основного металла. Плакирование листов и плит происходит в процессе горячей прокатки, для производства труб с внутренней плакировкой применяют полые слитки, в которые вставляют трубу из алюминия. При прессовании слой алюминия прочно приваривается к основному металлу. Плакирующий слой является обычно анодным по отношению к сердцевине, поэтому его защитное действие носит не только изолирующий, но и электрохимический характер, в результате чего даже те участки алюминиевого сплава, на которых плакировка нарушена, защищены от коррозии. Эффект электрохимической защиты тем выше, чем больше электропроводность среды. Так, при разрушении плакирующего слоя по длине образца на 25 мм потеря прочности сплава Д16Т в морской воде составила 5%, а в 0,01%-ном растворе хлористого натрия — 35%. В меньшей степени плакирующий слой защищает электрохимически в условиях атмосферной коррозии. В хорошо проводящей коррозионной среде эффективность электрохимической защиты плакирующего слоя снижается по мере уменьшения разности потенциалов между металлами плакировки и металлом защищаемого сплава. [c.62]

    Следует помнить, что во всех атмосферах, за исключением особо агрессивных, средняя скорость коррозии металлов в общем ниже, чем в природных водах или почвах. Это видно из табл. 8.3, где скорость коррозии стали, цинка и меди в трех различных атмосферах сравнивается со средней скоростью коррозии в морской воде и различных почвах. Кроме того, атмосферная коррозия равномерна, пассивирующиеся металлы (например, алюминий или нержавеющие стали) в этих условиях в меньшей степени подвержены питтингу, чем в воде или в почвах. [c.174]

    На воздухе поверхность алюмнипя быстро теряет металлический блеск, покрываясь тонкой II прочной защитной пленкой, состоящей из окиси алюминия. Защитная пленка предохраняет металл от дальнейшего окисления. Толщина защитной пленки обычно 50—70 Л. Чистый атмосферный воздух не вызываег коррозии алюминия. В загрязненной атмосфере промышленных городов, а также на морском побережье происходит заметная коррозия алюминия. Однако течением времени скорость ее уменьшается если для первых шести месяцев коррозия составляет 1—2 мм1год, то в дальнейшем снижается до 0,1 мм1год и меньше [215]. [c.173]

    Энергетический эквивалент ассоциации составляет от нескольких сот в первом слое до 20—40 кДж/моль в последующих и обнаруживает тенденцию к увеличению с уменьшением чистоты обработки поверхности металла (с увеличением удельной поверхности) и с появлением окисной пленки на его поверхности. Примером может служить окисная пленка алюминия с сорбированной на ее поверхности водой в виде ионов ОН". Существенным в данном случае является то, что реагирующие друг с другом два близлежащих иона ОН оставляют непокрытым один из атомов алюминия, который из-за дефицита электронов ведет себя как льюисовский кислотный центр, ориентируя на себя ингибитор атмосферной коррозии металлов. [c.159]

    С помощью фотографического метода И. Л. Ройх обнаружил образование перекиси водорода при атмосферной коррозии некоторых металлов. Он установил, что цветные металлы (такие, как 2п, fЛg, С(1, А1, N1, Мо) могут в атмосферных условиях на определенном расстоянии оказывать действие на поверхность специально обработанных фотопластинок. Данное явление объяснено активностью их тщательно очищенных поверхностей в результате выделения перекиси водорода при атмосферной коррозии. При этом полученные кривые скорости выделения последнего при коррозии алюминия и цинка в атмосфере с относительной влажностью 65—70% совпадают с кривыми изменения массы образца при окислении этих же металлов на воздухе [61]. [c.48]

    Установлена также линейная зависимость между числом выделившихся молекул Н2О2 и количеством образующихся молекул окисла. Это дает возможность определить рост окисной пленки, что является очень важным при использовании этого метода в целях изучения кинетики роста пленок на алюминии при атмосферной коррозии. Существует предположение, что слой металла на границе с окислом является источником экзоэлектронов. Помимо очень важной информации о начальной стадии коррозии, метод эмиссии позволяет тщательно исследовать действие ингибиторов и стимуляторов коррозии на самых разных стадиях атмосферной коррозии. И. Л. Ройх с сотрудниками показали, что степень эмиссии у металлов различна и по мере роста окисной пленки она затухает. [c.48]

    В атмосферном павильоне с жалюзими испытывали сплавы системы Л1-М2-Си А1-Мд Zп-Al-Mg, а также цинк (99,8%), электролитическую медь (99,9%), алюминий (99,5%) и электролитические и химические покрытия. Результаты испытаний металлов представлены в табл. V. 6. Для сравнения приведены данные о коррозии этих же металлов на воздухе в Батуми. В течение первых 3 месяцев с начала эксперимента метеорологические условия были следующими средняя месячная температура воздуха колебалась от -1-21,1 до +24,2 °С, относительная влажность — от 78 до 80%, количество осадков — от 81,1 до 335,5 мм, продолжительность смачивания — от 115 до 192 ч. Как видно из данных, скорость коррозии стали в открытой субтропической атмосфере намного выше, чем в павильоне ( в 20 раз). То же характерно и для цинка и меди. С алюминием происходит следующее вначале испытаний скорость коррозии алюминия в открытой атмосфере несколько меньше, чем в павильоне жалюзийном со временем она увеличивается и далее вновь падает. В конечном счете скорость коррозий алюминия в павильоне больше, чем в открытой атмосфере. Таким образом, в сильно агрессивных атмосферах коррозия металлов и сплавов на воздухе выше, чем в павильоне жалюзийном. Отсюда следует, что в тропических и субтропических районах изделия и оборудование следует хранить под навесом, брезентами или в складах. [c.77]

    Алюминиевые материалы для наружных применений, например на яаниях, с технической точки зрения в противокоррозионной юкраске обычно не нуждаются атмосферная коррозия, как уже поминалось, не настолько сильна, чтобы существенно влиять на рочность конструкции. Однако окрашивание алюминия широко [c.129]


Смотреть страницы где упоминается термин Атмосферная коррозия алюминия: [c.314]    [c.177]    [c.637]    [c.49]    [c.48]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

АТМОСФЕРНАЯ, ПОЧВЕННАЯ, КОНТАКТНАЯ, ЩЕЛЕВАЯ КОРРОЗИЯ АЛЮМИНИЯ И КОРРОЗИЯ В НЕВОДНЫХ СРЕДАХ

Алюминий Коррозия

Алюминий и его сплавы коррозия атмосферная

Атмосферная коррозия

Атмосферная коррозия алюминия его сплавов вольфрама железа кадмиевых покрытий кадмия латуни магния

Атмосферная коррозия алюминия его сплавов меди медистой стали



© 2025 chem21.info Реклама на сайте