Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость среды влияние на полимеризацию

    Изучение влияния поля было распространено и на анионные системы [63]. Исследована полимеризация стирола под действием литиевой соли низкомолекулярного живущего полистирола. Реакцию проводили в смеси бензол — тетрагидрофуран в присутствии и в отсутствие электрического поля (5 кв1см). Спектрофотометрические исследования показали, что концентрация живущих концевых групп остается постоянной в каждом опыте. Очевидно, электрическое поле не вызывает электроинициирования [89]. Результаты сведены в табл. VU.9. Интересно отметить, что никакого эффекта не наблюдалось в смесях, содержащих 10% тетрагидрофурана. Этот результат не вызывает сомнений, так как концентрация свободных ионов и их вклад в скорость реакции незначительны при этих условиях. Влияние поля наблюдали при более высоких концентрациях тетрагидрофурана, причем обнаруживается монотонная зависимость диэлектрической проницаемости среды и эффекта Вина. [c.445]


    Так как катионная полимеризация связана с образованием и диссоциацией ионной пары, то на скорость процесса оказывает влияние диэлектрическая проницаемость среды. Повышение диэлектрической проницаемости существенно ускоряет процесс, но мало сказывается на молекулярной массе полимера. В сравнении с радикальной, катионная полимеризация характеризуется низкой энергией активации (60 кДж/моль), поэтому она протекает с высокой скоростью, которая снижается с повышением температуры. [c.51]

    Скорость катионной полимеризации сильно зависит от природы растворителя. Электрофильные растворители, селективно сольватируя отрицательно заряженный противоион, способствуют повышению активности полимерного катиона. Большое влияние оказывает и диэлектрическая проницаемость среды. Повышение диэлектрической проницаемости ускоряет инициирование и тормозит обрыв цепи. Первый фактор (ускорение инициирования) уменьшает молекулярный вес полимера, второй (торможение обрыва цепи) — увеличивает. Одновременное влияние этих факторов приводит к тому, что изменение диэлектрической проницаемости среды мало сказывается на изменении молекулярного веса образующегося полимера. Понижение температуры катионной полимеризации способствует упорядоченному расположению молекул мономера, что, в свою очередь, способствует процессу образования полимера. При низких температурах, когда наступает плавление, некоторые мономеры полимери-зуются со скоростью взрыва. [c.540]

    Все, что было сказано выше о влиянии растворителей на ионизацию органических соединений и особенно алкилгалогенидов, в равной степени применимо к образованию карбониевых ионов из олефинов. Образование карбониевых ионов значительно ускоряется при применении растворителей с высокой диэлектрической проницаемостью, и это, по-видимому, по крайней мере частично, является причиной увеличения скорости полимеризации, наблюдаемого в полярных растворителях. Обычно молекулярный вес полимера, полученного в катионной полимеризации, увеличивается с ростом диэлектрической проницаемости среды, что указывает на большую продолжительность жизни ионной пары растущий полимерный ион — анион [76], но полностью объяснить это явление не так просто (см. гл. 3, [c.41]

    Пользуясь терминологией полимеризации, можно сказать что в неполярных средах роль обрыва для подобных реакций столь велика, что стадия роста полностью подавляется. Она становится возможной в растворителях, которые отличаются относительно высокой диэлектрической проницаемостью, например в дихлорэтане. Огромная роль полярности растворителя показана Шварцем при полимеризации стирола под влиянием трифторуксусной кислоты [52]. Характер процесса определяется порядком введения компонентов. При введении небольшого количества кислоты в мономер образуется только продукт присоединения кислоты к двойной связи стирола, так как низкая полярность среды исключает развитие полимеризации  [c.324]


    Передача на мономер обнаружена при полимеризации акрилонитрила в различных органических растворителях под влиянием металлорганических соединений. В ряде случаев полимеры, образующиеся в этих условиях, содержат двойные связи, причем степень полимеризации не зависит от конверсии. Акты передачи протекают в большей степени в средах с высокой диэлектрической проницаемостью. Роль этой реакции заметно падает с температурой (табл. 45). [c.369]

    Влияние среды на скорость полимеризации на ионных парах можно рассматривать с позиции электростатики, но надо учитывать специфическую нуклеофильную сольватацию катиона за счет комплексообразования. Имеется ряд примеров [34, 41—43] хорошей линейной корреляции логарифма константы скорости роста на ионных парах с параметром (е —1)/(2е-Ь 1) в бинарных смешанных растворителях. Так, при полимеризации стирола с образованием живущих активных центров линейные зависимости в координатах gk — г — )1 2г- - ) наблюдаются для систем бензол—тетрагидрофуран [34, 41], бензол—диметоксиэтан [42], диоксан—тетрагидрофуран [43]. Во всех случаях с увеличением диэлектрической проницаемости происходит увеличение скорости полимеризации, что свидетельствует о полярной природе переходного состояния в стадии роста цепи, но следует принимать во внимание возможность существования, в зависимости от природы среды, двух типов ионных пар — контактной и сольватно-разделенной (см. гл. III, 3), реакционная способность которых может быть различной [44]. Доля тех или иных ионных пар в системе зависит от конкретных свойств системы, в частности от природы противоиона и растворителя. Нужно весьма осторожно относиться к формальному соблюдению корреляционных зависимостей между скоростью полимеризации на ионных парах в бинарных растворителях и е среды или ее основностью, так как бывают случаи, когда изменение скорости реакции (при линейной корреляции) происходит в результате частичного или полного (в соответствии с константой равновесия) перехода контактных ионных пар в сольватно-разделенные. [c.386]

    Влияние условий полимеризации. Констаита сксрос Ги роста цепи при катионной полимеризации определяется не только природой мономера и температурой, но и зависит от типа инициирующей добавки и нолярности среды, т. е. действие всех этих факторов имеет комплексный характер, и нельзя их рассматривать изолированно. С понижением температуры скорость процесса уменьшается, но при этом возрастает диэлектрическая проницаемость среды, в результате чегс уменьшится влияние противоиона на процесс это может привести к повышению константы скорости роста цепи. Ниже показано, как изменяется с температурой при полимеризации изобутилена в среде СНгОг на катализаторе Н2О  [c.129]

    Анализ кинетического закона в терминах уравнения Аврами позволяет сделать вывод [27] о соотношении и взаимосвязи процессов, приводящих к структурным и химическим превращениям в системе. Так, если скорости обоих процессов соизмеримы, экспериментальная зависимость глубины превращения от времени позволяет получить информацивэ как о физическом, так и о химическом процессе. Если скорость химического процесса существенно ниже, чем физического, кинетика реакции отражает истинно химическую сторону процесса. В противоположном случае, когда процесс структурирования запаздывает, он все же может оказать косвенное влияние и на химический процесс через изменение подвижности молекул, диэлектрической проницаемости среды, экранирование активных центров и т. п. В работе [27] приведены примеры процессов различного типа применение растворителя, изменение температуры, проведение процессов полимеризации в присутствии агентов передачи цепи — все эти способы позволяют переводить процесс из одного режима в другой. Что касается трехмерной полимеризации, то на примере диметакрилатов триэтиленгликоля (ТГМ-3) и бш -триэтиленгликоль-фталата (МГФ-9) показано, что в широком интервале глубин превращения [c.100]

    Важным вопросом катионной полимеризации является вопрос о природе активного центра свободный ион или ионная пара ведут полимеризацию Попытка дать ответ на этот вопрос была сделана Танака и др. [17], которые изучали влияние электрического поля на скорость полимеризации стирола и а-метилстирола. Из рис. 4видно, что увеличение силы поля повышает скорость полимеризации, причем действие усиливается с увеличением диэлектрической постоянной среды. Указанные явления сами авторы объясняют тем, что поле увеличивает степень диссоциации ионных пар, а так как скорость роста выше на ионах, не связанных с противоионом, повышение их концентрации за счет увеличения диэлектрической проницаемости среды приводит к ускорению реакции. [c.222]

    Цуда полагал, что растворитель может влиять на механизм полимеризации, увеличивая диэлектрическую проницаемость среды, а также подвергаясь радиолизу с образованием катализатора типа Фриделя — Крафтса. Так, хлористый метилен может разлагаться с выделением НС1, который затем будет инициировать катионную полимеризацию, чем объясняется наличие хлора в цепи полимера. Другие алкилгалогеииды могут распадаться аналогично, но давать более слабые кислоты, являющиеся менее эффективными катализаторами Фриделя — Крафтса. Имеется указание на то, что акрилонитрил захватывает электроны с образованием анионов, снижая, таким образом, скорость катионной реакции при высоком содержании акрилонитрила. Цуда [66[ заключил, что главным фактором, определяющим механизм полимеризации, является ионная реакционная способность мономера, а растворители только влияют на скорость роста уже образовавшихся ионов. Очевидно, для определения влияния среды на механизм полимеризации необходимы дополнительные исследования. [c.539]


    Чрезвычайно важным фактором для катионной полимеризации является природа реакщ10нной среды. Наблюдаемые при этом закономерности весьма просты повышение полярности среды, благоприятствуя реакциям инициирования и роста, приводит к ускорению полимеризации. Насколько существенно это влияние, показывают данные Кокли и Дейнтона по полимеризации стирола под влиянием комплексов RSn ls в различных средах в четыреххлористом углероде полимеризация вообще отсутствует, а в нитробензоле протекает с большой скоростью [16]. Весьма важно, что изменение полярности среды влияет не только на скорость процесса, но и на кинетические зависимости, например на порядок реакции. Это является результатом различий в механизме инициирования. Приведенное выше уравнение (V-11), которое, как уже отмечалось, не является общим для всех катионных систем, справедливо для сред, отличающихся высокой полярностью. В подобных случаях образование активных центров протекает без участия мономера и общая скорость реакции имеет 1-й порядок по мономеру (V-15). Напротив, в средах с низкой диэлектрической проницаемостью возникновение активных центров, особенно для комплексов, образованных слабыми основаниями Льюиса, происходит только при участии мономера. Степень этого участия на- [c.303]

    Комплекс катализатор—сокатализатор (без участия мономера) инициирование комплексами кислот Льюиса с донорами протонов и, если используется среда с достаточно высокой диэлектрической проницаемостью, с галогепалкилами. Сюда же можно отнести полимеризацию под влиянием йода. [c.307]

    Столь же ограничены сведения о зависимости константы роста при катионной полимеризации от температуры. Изучение температурного хода константы роста важно в связи с отмеченной выше удивительной зависимостью обп1,ей скорости полимеризации от температуры. Явление ускорения реакции при понижении температуры обычно объясняют резким уменьшением роли реакции обрыва в области низких температур. На этот эффект могут накладываться относительно меньшие изменения скорости реакции роста. Любопытны первые данные о зависимости к от температуры, которые получили Лонгворс и Плеш для изобутилепа в интервале —30, —90° (табл. 29). Как оказалось, в изученной системе к вообш е очень мало меняется с температурой и имеется лишь намек на минимум при —60°. Возможно, что в этом случае проявляется зависимость к от диэлектрической проницаемости, которая растет с понижением температуры. Поэтому изменение диэлектрической проницаемости в полярных средах (где влияние температуры на 8 особенно ош утимо) с температурой вносит определенные искажения в собственный температурный ход константы роста. [c.311]

    Рост цепи обычно считают простейшим элементарным процессом. Следует отметить влияние противоиона. Если существующие общие представления о катионной полимеризации правильны, то надо полагать, что противоион не может полностью выйти за пределы радиуса электростатического действия растущего карбониевого иона и ионная пара выступает в качестве единой кинетической единицы. Тогда, конечно, во всех элементарных процессах участвует и противоион. Это особенно характерно для сред с низкой диэлектрической проницаемостью, в которых противоион тесно связан с растущим центром. Акт роста можно представить себе как результат согласованного донорно-акценторного действия ионной пары [c.223]

    Аналогичные доводы можно привести для объяснения благоприятствующего влияния молекул растворителя, обладающих сродством к электрону, и неорганических твердых добавок. В последнем случае, как считает Мага, ионы должны образовываться в области предельного расстояния захвата твердой поверхностью, иначе твердые добавки не будут ускорять полимеризацию. Этот довод означает, что твердая поверхность не может действовать специфически как противоион. Мага считал, что, хотя теоретически это заключение мало обосновано, его выводы остаются качественно полезными, и предсказывал, что реакционная среда, обладающая высоким сродством к электрону в сочетании с высокой диэлектрической проницаемостью, будет благоприятствовать ионному росту цепи даже в случае мономеров, обычно под действием облучения полимеризующихся по радикальному механизму. [c.527]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость среды влияние на полимеризацию: [c.130]    [c.311]   
Катионная полимеризация (1966) -- [ c.114 , c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Полимеризация влияние

Полимеризация влияние среды

Полимеризация диэлектрическая

Полимеризация среды



© 2024 chem21.info Реклама на сайте