Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептидная цепь спираль

    ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ. Водородные связи играют основную роль в определении конформации полипептидной цепи. Спираль — наиболее высокоорганизованный тип конформации отдельной полипептидной цепи] ъ-аминокислот. Она определяется пространственным расположением следующих атомов а-аминокислот, составляющих цепь 1) атома углерода карбонильной группы, 2) а-углеродного атома и 3) атома азота а-аминогруппы. Наиболее устойчивой иа различных типов спирали является [c.408]


    В начале 50-х годов американский химик Лайнус Полинг (род. в 1901 г.) предположил, что полипептидная цепь свернута в спираль (подобна винтовой лестнице ) и удерживается в этом положении водородными связями. Эта идея оказалась особенно плодотворной применительно к относительно простым фибриллярным белкам, из которых состоят покровные и соединительные ткани. [c.130]

    Белковая цепь приобретает чрезвычайную устойчивость, сворачиваясь в правостороннюю а-спираль (рис. 21-17). В такой структуре аминокислотные остатки направлены наружу от оси спирали, а группы С=0 одного витка спирали связаны с группами Н—N следующего витка водородными связями. Водородные связи образуются между сильно электроотрицательными атомами, например Р или О, и атомами водорода с небольшим локальным избытком положительного заряда. Такие связи имеют главным образом электростатическое происхождение и зависят от способности двух атомов к тесному сближению. Атомы О и Р, имеющие небольшие размеры, способны давать такие связи более крупные атомы О обычно не могут образовать водородных связей. В белках водородные связи играют очень важную роль они возникают между кислородным атомом карбонильной группы и атомом водорода аминогруппы, принадлежащими полипептидной цепи. Как видно из рис. 21-13, частично двоесвязный характер пептидной связи С—N не только обеспечивает плоскостность пептидного звена, но также делает атом кислорода несколько отрицательным, а атом азота с присоединенным к нему атомом водорода несколько положительными. Это и создает благоприятные условия для образования водородных связей. [c.316]

    При увеличении влажности волоса до 5-7% происходит экстремальное увеличение его плотности, что обусловлено гидратацией пептидных и других полярных групп полимерного субстрата. При большем содержании воды в кератине развиваются пластификационные процессы, ослабляющие межмолекулярные контакты и повышающие сегментальную подвижность полипептидных цепей. Если бы кератин был представлен в полимерном субстрате только одним типом вторичной структуры - а-спиралью, - то все они были бы жесткими палочковидными образованиями. Но макромолекулы белка включают и участки статистических клубков, а также складчатые р-структуры (правда, доля последних невелика). [c.380]

    Этот белок характеризуется третичной структурой, состоящей из трех левовращающих спиралей (см. рис. 6.10), которые, переплетаясь между собой, образуют правовращающую сверхспираль (рис. 6.14). На каждый виток тройной спирали приходится десять витков полипептидных цепей. При гидротермических обработках природных коллагеновых волокон происходит их резкая, но необратимая усадка ( сваривание коллагена). Межплоскостные расстояния в рентгенографической ячейке [c.381]


    Мы сразу же поняли, что строение ДНК может оказаться более сложным, чем строение а-спирали. В а-спирали одна полипептидная цепь (последовательность аминокислот) сворачивается в спираль, удерживаемую водородными связями между группами этой же цепи. Морис, однако, сказал Фрэнсису, что диаметр молекулы ДНК больше, чем это было бы, если бы она состояла только из одной полинуклеотидной цепи (последовательности нуклеотидов). Это навело его на мысль, что молекула ДНК представляет собой сложную спираль, состоящую из нескольких полинуклеотидных цепей, завернутых одна вокруг другой. В этом случае всерьез приниматься за построение модели можно было, только решив заранее, как соединены эти цепи друг с другом водородными свя- [c.37]

    Хотя Полинг получил а-спираль, почти не используя рентгеноструктурных данных, он знал об их существовании и до некоторой степени их учитывал. Благодаря наличию этих данных можно было быстро отбросить значительную часть возможных трехмерных конфигураций полипептидной цепи. Точные рентгенографические данные помогли бы и нам быстрее продвинуться в изучении более сложной молекулы ДНК. Простой просмотр рентгенограмм ДНК избавил бы нас от многих ошибок на первых же шагах. К счастью, одна более или менее приличная рентгенограмма уже была опубликована. Ее пятью годами раньше получил английский кристаллограф У. Т. Астбери, и она могла послужить нам отправной точкой. Однако гораздо лучшие рентгенограммы кристаллической ДНК, полученные Морисом, сэкономили бы нам от шести месяцев до года труда. Беда была в том, что они принадлежали Морису и с этим приходилось считаться. Выход был один поговорить с ним. [c.40]

    Именно вторичная аминогруппа придает жесткость и определяет направление пептидной цепи, из которой построен белок. Так, например, направление спирали коллагена (молекула коллагена построена как тройная спираль из трех отдельных полипептидных цепей, переплетенных между собой) постоянно меняется, что обусловлено содержанием в нем пролина и оксипролина. Коллаген— единственный белок, в котором обнаружен оксипролин, [c.30]

    Вторичная структура — форма полипептидной цепи в пространстве (чаще всего спираль). Белковая цепь закручена в спираль (за счет множества водородных связей).  [c.258]

    Ш Третичная структура — реальная трехмерная конфигурация, возникающая при закручивании в спираль полипептидных цепей белков, происходящем под действием дисульфидных, водородных и иных связей. [c.258]

    Рентгенографическим методом были определены межатомные расстояния и валентные углы в молекулах полипептидов и на этой основе построена пространственная модель белков. В 1951 г. Л. Полинг выдвинул в качестве модели пространственного строения белковой молекулы а-спираль , в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность цилиндра, причем звенья соседних витков соединяются между собой водородными связями между группами ЫН и СО. Это не единственная возможная конфигурация для белковых молекул. [c.344]

    В 1951 г. Полинг выдвинул в качестве модели пространственного строения белковых молекул так называемую а-спи-раль, в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность цилиндра. Соседние витки располагаются таким образом, что между группами ЫН и СО каждого третьего звена устанавливаются водородные связи (рис. 65). Один виток спирали содержит 3,6 аминокислотных остатка. Степень развития спирали зависит от природы белка и внешних условий. Так, например, поли-1-аланин начинает приобретать в чистой воде конформацию а-спирали, если в полипептидной цепи содержатся более 10 звеньев. В присутствии неорганических солей спираль лучше стабилизируется за счет гидрофобных взаимодействий. [c.636]

    Другой упорядоченной конформацией является р-структура (р-спираль), в которой полипептидные цепи располагаются параллельно в вытянутой зигзагообразной форме и также за- [c.636]

    Предполагают, что в некоторых белках несколько а-спиралей соединяются, образуя более толстый пучок полипептидных цепей Некоторое количество таких пучков может образовывать еще более объемистый пучок цепочек, напоминающий многожильный кабель (рис. 73). В других белках (гемоглобин, миоглобин) одна а-спираль свернута в сложный клубок (рис. 74). [c.177]

    В пространстве закрученная в спираль полипептидная цепь образует третичную структуру белка (рис. 3). Она поддерживается взаимодействием разных функциональных групп полипептидной цепи. Так, например, между атомами серы часто образуется дисульфидный мостик (—5—8—), между карбоксильной группой и гидроксильной группой имеется сложноэфирный мостик, а между карбоксильной группой и аминогруппой может возникнуть солевой мостик. Для этой структуры характерны и водородные связи. Третичная структура белка во многом обусловливает специфическую биологическую активность белковой молекулы. [c.19]

    Полипептидные цепи образуют два типа упорядоченных конформаций. Наиболее распространена так называемая а-спираль, в которой С=Н-группы остатка одной аминокислоты образуют водородную связь с НМ—0-группой другой аминокислоты. Ход полипептидных цепей в спирали напоминает резьбу винта, и на одном витке спирали помещается 3,7 аминокислотных остатка. [c.564]


    Третичная структура белка — реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль полипептидной цепи. В простейших случаях третичную структуру можно представить как спираль, которая в свою очередь свернута спиралью. У такой структуры в пространстве имеются выступы и впадины с обращенными наружу функциональными группами. Третичной структурой объясняется специфичность белковой молекулы, ее биологическая активность. [c.352]

    Вторичная структура белка (для большинства белков) — это а-спираль, которая образуется в результате скручивания полипептидной цепи за счет водородных связей между группами -С- и -N- (рис. 21). [c.649]

    Молекулярная цепь, построенная из остатков аминокислот, соединенных пептидными связями, называется полипептидом. В макромолекулу белка входит одна или несколько полипептидных цепей, по всей длине которых распределены оставшиеся свободные группы —ЫНг и —СООН. Полипептидные цепи или закручиваются в спираль, витки которой закреплены внутримолекулярными водородными связями, или располагаются параллельно, в виде лент (рис. 106). [c.261]

    Еще более важна ее роль во многих биологических процессах, так как водородные связи благодаря их незначительной прочности легче возникают и рвутся. Установлено, что определенные конфигурации полипептидных цепей в протеинах удерживаются прочно благодаря водородным связям они же обусловливают поперечные связи в двойных спиралях нуклеиновых кислот, что играет большую роль в механизме наследственности. [c.53]

    Каждому белку присущи строго определенная последовательность аминокислот в полипептидной цепи и определенная пространственная структура. В связи с этим у белков различают четыре уровня структурной организации первичная структура соответствует последовательности остатков аминокислот в полипептидной цепи вторичная структура — расположению полипептидной цепи в пространстве при закручивании ее в спираль за счет водородных связей между группами СО и ЫН разных участков цепи третичная структура определяет, каким образом сворачиваются полипептидные цепи в клубки (субъединицы) путем образования связей, ионов с участием свободных амино- и карбоксигрупп на взаимо- [c.310]

    Первичная структура белка, т. е. последовательность аминокислотных остатков в полипептидных цепях, уже обсуждалась в разд. 14.3. Термин вторичная структура используют для обозначения тех простейших способов, при помощи которых полипептидные цепи скручиваются или складываются в молекулах белков. Наиболее важные вторичные структуры —а-спираль и два вида структуры, которую называют структурой типа складчатого слоя. (Третичная структура включает вторичные структуры и те фрагменты полипептидной цепи, которые соединяют один участок вторичной структурой с другим четвертичная струк- [c.428]

    Вторичные структуры миоглобина и гемоглобина представлены главным образом а-спиралями. Восемь отрезков полипептидной цепи являются относительно прямолинейными ю-спиралями эти отрезки содержат 80% аминокислотных остатков всей цепи, остальные 20% остатков приходятся на места сгибов, соединяющие между собой ja-спираль-ные отрезки. При укладывании цепи (третичная структура) образуется полость, в которой расположена гем-группа. [c.439]

    Блок-схема алгоритма расчета третичной структуры белковой молекулы приведена на рис. 7. На получаемые конформации налагались как энергетические, так и геометрические ограничения о-спирали не должны пересекаться (минимальное допустимое расстояние между осями о-спиралей - 3.5 А) концы а-спиралей, соединенных участками полипептидной цепи, не могут расходиться более чем на Мк2.5 А (М - число аминокислот между концами а-спиралей). [c.148]

    Если бы а-спираль была единственным типом вторичной структуры белков, то все они были бы жесткими палочковидными образованиями. Поскольку это не так, следует заключить, что а-спирали составляют лишь отдельные участки полипептидных цепей. Отклонение от а-спиральной структуры вызвано разнообразными факторами к ним относится содержание пролина, оксипролина и (или) валина в пептидной цепи. После образования пептидной связи амидный водород отсутствует в пролине и оксипролине, и эти аминокислотные остатки не могут участвовать в образовании водородных связей в а-спирали. Изопропильная группа валина, по-видимому, ослабляет а-спираль из-за стерического отталкивания. [c.408]

    Существенной частью механизма описанной выше модели ферментативного механо-химического преобразователя являются силы взаимодействия заряженных групп макромолекулы. Следует отметить, что модель биологической подвижности, основанную на конформационных изменениях полипептидных цепей (спиралей) в результате изменения взаимодействия электрических зарядов боковых групп, предложил в 1929 г. К. Майер [c.179]

    Белки состоят в основном из /.-аминокислот, характеризующихся определенными значениями [а]в. Полипептиды, полученные из -аминокислот, обладают оптической активностью и в форме статистического клубка. Однако основной вклад в оптическую активность белка дает специфическая спиральная упаковка плоских амидных групп —ЫН—СНК—СО— (звездочка отмечает асимметрический атом углерода, К — боковая группа, специфичная для каждой аминокислоты). В настоящее время наиболее щироко известны две упорядоченные структуры белков а-спираль и р-склад-чатая структура. Переходы амидной группы л->л и /г—>-я вносят различные вклады в оптическую активность полипептидных цепей, находящихся в различных конформациях соответственно спектры ДОВ и КД полипептидов в различных конформациях отличаются друг от друга. На рис. 24 приведены спектры ДОВ и КД модельных полипептидов в конформациях статистического клубка, [c.45]

    Полипептидные цепи способны образовывать а-спиральную конформацию (рис. 6.10). Такая конформация характеризуется максимальным насыщением водородных связей вдоль оси спирали. Боковые заместители аминокислотных звеньев направлены наружу и находятся вне спирали. Дополнительным фактором, фиксирующим а-спиральную конформацию макромолекулы белка, является образование внутрицепных дисульфидных (цистиновых), сложноэфирных и солевых связей. Возникновение двойных и тройных спиралей обусловлено интенсивными межмолекулярными взаимодействиями между ними. Такие спиральные одно- и многоцепочечные макромолекулы являются примером стержнеобразных жестких цепей, характеризующихся /ф < 0,63. [c.344]

    Расстояние между этими слоями соответствует 3,5-3,85 А. Полипептидные цепи связаны между собой интенсивными межмолекулярными связями как в каждой ленте, так и между соседними плоскостями. Эти ленты скручены в плоскую спираль, которая в свою очередь является элементом структуры фиброинового стержня натурального шелка. [c.376]

    Два таких основных типа конфигурации белковых структур открыли и обосновали в сороковых годах двадцатого столетия Лайнус Полинг и Роберт Кори. При этом было установлено, что более высокоорганизованным типом конформаций полипептидных цепей является правовращающая а-спираль. Именно а-спиралъ - основной и широко-распростране(гнъгй тип вторичной стр)уктзры белков. Спираль может быть правой или левой, но более устойчивой являегся правая а-спираль. [c.270]

    Фкбрнллярные белки представляют собой волокнистые вещества, большей частью нерастворимые в воде и солевых растворах. Полипептидные цепи в них образуют пучки, будучи ориентированы параллельно друг другу в направле[пти волокна. Пол[нтептидиые цепи таких белков рассматриваются как отдельные химические образования. К этог группе относятся кератин, миозин, фибриноген, коллаген и др. Рентгенографические исследования привели к выводу, что во многих из i rx полипептидные цепи закручены в спираль таким образом, что внугры [c.396]

    Некоторые из таких белков могут растягиваться, причем нерастянутая а-форма молекулы переходит в растянутую р-форму. Этот процесс может быть прослежен методами рентгеновского анализа и, по-видимому, отвечает переходу спиральной формы полипептидной цепи (а-спираль, стр. 382) в растянутую (складчатая цепь, стр. 383). Миозин мыщечной ткани, по растворимости относящийся к альбуминам, в известном отношении близок к таким нитевидным молекулам. Соединяясь с другим мышечным белком, актином, который может существовать и в нитевидной и в глобулярной формах, миозин образует актомиозин, обладающий высокой е1Язкостью в растворах. [c.397]

    Порядок химической связи аминокислот друг с другом создает первичную структуру макромолекулы белка. Однако его свойства зависят также и от конформации полипептидной цепи (вторичной структур ы). Одной из моделей вторичной структуры белка является так называемая а-спираль, в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность 1илиндра. Устойчивость а-спирали обеспечивается водородными связями между группами NH и С=0 (рис. 11.1). [c.334]

    По структуре коллаген отличается от других фибриллярных белков. Каждая полипептидная цепь имеет конформацию левой спирали, а три такие цепи удерживаются вместе водородными связями и образуют правую трехнитевую спираль. Исходя из этой структуры, можно понять, почему каждый третий аминокислотный остаток в полипептидной цепи коллагена — глицин три цепи удерживаются межцепочечны-ми водородными связями так тесно, что пространство между ними до-статочно лишь для боковой цепи, размеры которой не больше атома водорода. Расположенные плотно цепи атомов, соединенные ковалентными связями, обеспечивают такому фибриллярному белку исключительную прочность — волокно сухожилий имеет почти такой же предел прочности на растяжение, как и проволока из малоуглеродистой стали того же диаметра. В сухожилиях полипептидные цепи вытянуты вдоль оси ткани, в то время как ткань роговицы глаза образована чередующимися слоями, в которых цепи расположены под прямыми углами одна относительно другой. [c.435]

    В работе [191 доказано, что при описании белка квазищаро-вому ядру можно сопоставить квазисферический многогранник. Вершинами аппроксимирующего многогранника является концы а-спиралей, ребрами - соединящие их участки полипептидной цепи и оси а-спиралей. [c.143]

    При расчете третичной структуры осуществлялось задание случайных расположений о-спиралей в аадактоА области минимизации с помощью датчика случайных чисол. Выбиралась достаточно большая область минимизации, охватывапцая большую часть возможных конформационных состояний данной белковой молекулы, учитывающая, что а-спирали связаны между собой небольшими участками полипептидной цепи. Параметры области минимизации, опре-делящие отклонение в обе стороны от начального расположения, приведены ниже  [c.146]

    Рнс. I. Спнральные конформации полипептидных цепей а-Зю-спираль, 6-а-спираль, в-л спираль (пунктирные линии-водородные связи). [c.249]


Смотреть страницы где упоминается термин Полипептидная цепь спираль: [c.85]    [c.379]    [c.109]    [c.119]    [c.386]    [c.302]    [c.421]    [c.114]    [c.187]    [c.408]    [c.249]    [c.249]   
Молекулярная генетика (1974) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи



© 2025 chem21.info Реклама на сайте