Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача массообменные процессы

    III. Массообменные процессы связаны с переходом вещества из одной фазы в другую в результате диффузии. Поэтому их называют также диффузионными. К этому классу относятся перегонка, ректификация, абсорбция и десорбция, адсорбция, экстракция, сушка, кристаллизация и др. Движущей силой массообменных процессов является разность концентраций. Скорость процесса определяется законами массопередачи. [c.13]


    Таким образом, зная коэффициенты массоотдачи и константы фазового равновесия, можно рассчитать коэффициент массопередачи для массообменного процесса конкретного типа. [c.55]

    Процесс адсорбции — массообменный процесс с участием твердой фазы. Расчет должен проводиться на основании совместного решения уравнения материального баланса и уравнения массопередачи. [c.95]

    Движущая сила массопередачи, т. е. разность у—Ур) или Хр—х), постоянно меняется, поэтому для расчетов необходимо определить среднюю движущую силу процесса, которая зависит от типа массообменного процесса. [c.53]

    Согласно развиваемому системному подходу к анализу сложной совокупности процессов на микро- и макроуровнях, к эффектам, определяющим поведение системы на макроуровне, относится массопередача. Массообменные процессы в биореакторе непосредственно влияют на рост микроорганизмов, определяя скорость транспорта питательных веществ к клеткам и отвод продуктов метаболизма в среду в количестве, соответствующем стехиометрическим коэффициентам. Наибольший практический интерес, с точки зрения ограничения скорости процесса ферментации, представляют такие элементы питания, как кислород и углеродсодержащий субстрат, учитывая большую удельную потребность в них клеток, низкую растворимость в культуральной жидкости и присутствие в ферментационной среде в виде дисперсных фаз. [c.87]

    В термодинамической теории массообменных процессов разделения при переходе от составов фаз в одном межтарелочном отделении к составам фаз в соседнем за количественную основу принимается гипотеза теоретической тарелки ступени). Особенность этой теории состоит в том, что она не занимается вопросом о механизме процесса и не исследует диффузионной природы и кинетической картины явления массопередачи на контактной ступени. Теория массообменных процессов разделения, основанная на концепции теоретической тарелки (ступени), изучает предельные условия проведения процесса и устанавливает эталоны, сравнением с которыми можно получить правильное суждение [c.122]

    В первой и третьей зонах реактора протекают физические процессы подвода и отвода веществ, подчиняющиеся общим законам массопередачи. Закономерности массопередачи определяются законами фазового равновесия, движущей силой процесса и коэффициентами скорости массообменных процессов. Массопередача осуществляется путем молекулярной диффузии, конвекции, испарения, абсорбции и десорбции. [c.95]


    Для массообменных процессов, по аналогии с процессами переноса тепла, принимают, что количество переносимого вещества пропорционально поверхности раздела фаз и движущей силе. Движущая сила характеризуется степенью отклонения системы от состояния динамического равновесия, выражаемой наиболее точно разностью химических потенциалов распределяемого вещества. Диффундирующее в пределах фазы вещество перемещается от точки с большей к точке с меньшей концентра-цией, и в расчетах движущую силу процессов массопереноса выражают приближенно через разность концентраций подобно тому, как в процессах теплопереноса ее выражают разностью температур. Расчетные выражения движущей силы не одинаковы для процессов массоотдачи и массопередачи и будут рассмотрены ниже для каждого из этих процессов. [c.383]

    Что такое массопередача Какие процессы относятся к массообменным  [c.69]

    Внутренний коэффициент массоотдачи в данном случае равен = Рп + Рт- Как и для других процессов, для массообменных процессов с твердой фазой используется понятие объемных коэффициентов массоотдачи и массопередачи Р а, КуО. и т. д. [c.66]

    В настоящее время известно большое количество алгоритмов расчета массообменных процессов (ректификация, экстракция, абсорбция, адсорбция и т.д.), отличающихся степенью детализации отдельных элементов, но, по сути, предназначенных для решения систем уравнений материального и теплового балансов, нелинейность которых зависит от точности описания парожидкостного равновесия, кинетики массопередачи, гидродинамики потоков. Объем входной информации зависит от точности модели, однако выходная информация подавляющего большинства алгоритмов практически одинаковая — профили концентраций, потоков и температур по высоте аппарата и составы целевых продуктов. Правда, соответствие результатов расчета реальным данным будет определяться тем, насколько точно в модели воспроизведены реальные условия. [c.314]

    Массопередача в ЦПА изучена на примерах абсорбции хорошо растворимых газов — водяного пара и аммиака водой и водными растворами электролитов [43]. ЦПА представляет собой одноступенчатый реактор и его применение, по-видимому, наиболее целесообразно для массообменных процессов, лимитирующихся переносом вещества в газовой фазе. [c.258]

    Скорость сушки, как массообменного процесса, следует основному уравнению массопередачи (16-17), согласно которому [c.758]

    В больпшнстве случаев коэффициент внутренней массоотдачи р, находят по уравнению (19.40) с использованием экспериментально найденных коэффициентов массопроводности. Как и для других процессов массопереноса, в расчетах массообменных процессов с твердой фазой используется понятие объемных коэффициентов массоотдачи и массопередачи Рр- , Ку и т.д. [c.188]

    Движущей силой массообменных процессов является разность концентраций или градиент концентраций между фактической концентрацией компонента в данной фазе и равновесной с другой фазой, а скорость процесса определяется законами массопередачи. [c.7]

    Для нахождения коэффициента скорости массообменного процесса — коэффициента массопередачи — рассмотрим закономерности, по которым происходит передача вещества из одной фазы И другую. д [c.29]

    Массообменными называются процессы, скорость которых определяется скоростью переноса вещества из одной фазы в другую в направлении достижения равновесия (скоростью массопередачи). В процессе массообмена принимают участие три компонента распределяющее вещество, составляющее первую фазу, распределяющее вещество, составляющее вторую фазу и распределяемое вещество, переходящее из первой фазы во вторую. [c.113]

    Значения ВЕП часто находят экспериментально (вместо определения коэффициентов массопередачи) эмпирические формулы для расчета /i, и Лц в фазах, по которым, пользуясь принципом аддитивности, определяют ВЕП, будут приведены ниже при рассмотрении конкретных массообменных процессов для аппаратов различных конструкций. [c.417]

    В частных случаях коэффициент К имеет особые названия, например при переносе тепла — коэффициент теплопередачи, при диффузионных (массообменных) процессах — коэффициент массопередачи и т. д. [c.13]

    В зависимости от единиц, выбранных для измерения концентраций, размерности, а следовательно, и числовые значения коэффициента массопередачи Ку будут различными, что следует учитывать при использовании литературных данных о значениях Ку Различных массообменных процессов. Если, например, концентрация измеряется в кг/лt размерность Ку будет  [c.297]

    Массообменные (диффузионные) процессы, характеризующиеся переносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз. Наиболее медленной и по-атому обычно лимитирующей стадией массообменных процессов является молекулярная диффузия распределяемого вещества. К этой группе процессов, описываемых законами массопередачи, относятся абсорбция, перегонка (ректификация), экстракция из растворов, растворение [и экстракция из пористых твердых тел, кристаллизация, адсорбция и сушка. [c.13]


    Основным кинетическим уравнением массообменных процессов является уравнение массопередачи, которое основано на общих кинетических закономерностях химико-технологических процессов. [c.9]

    Формулы (III.39)—(III.40) справедливы лишь для случая, когда потоки фаз равномерно распределены по поперечному сечению аппарата, перемешивание отсутствует и все частицы каждой фазы движутся с одинаковыми скоростями (режим идеального вытеснения). В реальных аппаратах режим движения фаз всегда отличается от идеального и движущая сила процесса зависит от перемешивания. Учет влияния перемешивания на изменение концентраций по высоте (длине) аппарата и соответственно на среднюю движущую силу процесса возможен, если экспериментально определены коэффициенты продольного перемешивания (см. стр. 159). Так как чаще всего экспериментальные данные по перемешиванию отсутствуют, то расчет средней движущей силы процесса массопередачи проводят по формулам (III.39)—(III.40), получая условные коэффициенты массопередачи — Ks и При этом не всегда имеет место пропорциональная зависимость между скоростью процесса и движущей силой, как это должно следовать из уравнения (1) — см. введение. Коэффициент массопередачи в таком случае зависит от концентрации поглощаемого или десорбируемого компонента и это создает дополнительные трудности при обобщении опытных данных и создании научно обоснованных методов расчета массообменных процессов. [c.142]

    Высота адсорбера. Расчет требуемой высоты (объема) слоя адсорбента производят по аналогии с другими массообменными процессами (абсорбция, ректификация и др.) на основе общего уравнения массопередачи. Как следует из главы X, это уравнение в дифференциальной форме может быть представлено в виде [c.579]

    С помощью математического моделирования любой массообменный процесс можно представить как большую систему, состоящую из ряда подсистем равновесие , массопередача , гидродинамика , теплопередача , подсистема балансов массы и энергии . Анализ этих подсистем, в свою очередь, позволяет расчленить их на подсистемы более низкого уровня. Например, для подсистемы гидродинамика целесообразно рассматривать макро- и микроуровни для подсистемы теплопередача - общие балансы теплоты (макроуровень) и тепловое воздействие потоков фаз (микроуровень).  [c.225]

    Изучается массообмен в наиболее распространенных тарельчатых аппаратах. В литературе [3] рекомендуются формулы для определения коэффициентов массоотдачи и массопередачи для этих аппаратов, нуждающиеся в уточнении. Поэтому исследование массообменных процессов (абсорбции и ректификации) и расчет массообменных аппаратов до настоящего времени проводят с точки зрения статики процесса кинетические особенности процесса учитываются введением эмпирического коэффициента эффективности (коэффициента обогащения или коэффициента полезного действия) тарелки. [c.45]

    Целью настоящей работы является разработка метода расчета сушильных барабанных машин с использованием обобщенного уравнения массопередачи, в котором в отличие от обычного уравнения массопередачи учитывается не одно, а два состояния равновесия (по одному для каждой из двух взаимодействующих фаз). При этом предполагается, что любая гетерогенная система обладает, по крайней мере, двумя состояниями равновесия, каждое иэ которых оказывает влияние на скорость протекания процесса в любой точке системы и в любой момент времени. Следствием такого предположения является симметричность кинетического уравнения любого массообменного процесса относительно равновесных состояний систеш. [c.63]

    При анализе массообменных процессов будем исходить из условия состояния границы контакта фаз, что существенно различает механизмы процессов переноса массы. По этому принципу массообменные процессы подразделяют на массопередачу в системах со свободной границей раздела фаз (газ-жидкость, пар-жидкость, жидкость-жидкость), массопередачу в системах с неподвижной поверхностью контакта фаз (системы газ-твердое тело, пар-твердое тело, жидкость-твердое тело) и массопередачу через полупроницаемые перегородки (мембраны). [c.9]

    Диспергирование в системах жидкость—жидкость, газ-жидкость применяется для создания развитых межфазных поверхностей Р, обеспечивающих высокую интенсивность тепло- и массообменных процессов. В этом случае в пропускной способности кР поверхностной стадии процесса переноса прежде всего существенно увеличивается Р кроме того, диспергирование часто сопровождается также повыщением коэффициента тепло-или массопередачи к. Для указанных выше дисперсных систем размер капель (пузырьков), их распределение по размерам и межфазная поверхность являются важными технологическими факторами при организации процессов переноса и расчете тепло- и массообменных аппаратов. [c.461]

    Пусть, например, к Р Ь, тО применительно к выражению (10.36а) это означает а, Ь 1. Тогда массоперенос лимитируется массопередачей через поверхность контакта, поскольку дробь /кхР значительно превышает остальные слагаемые в знаменателе. Для расчета массообмена здесь необходимо располагать значениями кинетических характеристик и >у (а также т) или сразу коэффициента кх (либо ку) и величиной Р пропускные способности Ь и тВ в такой ситуации роли не играют. В этом случае говорят о массообмене в условиях поверхностной задачи. И для интенсификации массопереноса в целом нужно увеличивать Р, повышать кх- При этом может возникнуть вопрос, какая из стадий массопередачи контролирует процесс — перенос вещества через пограничную пленку со стороны фазы у или фазы х . Разумеется, следует увеличивать в первую очередь ту из стадий или т ур, которая медленнее (скажем, при хР < принять меры для дополнительной турбулизации фазы х с целью уменьшения толщины диффузионной пограничной пленки в этой фазе). [c.828]

    Согласно КФ-классификации рассматриваемый процесс абсорбции относится к классу 3(2-2)1. Полученные в гл.10 формулы для расчета массообменных процессов класса 3(2-2)1 полностью применимы к абсорбции нелетучим поглотителем. Так, поверхность массопередачи Р может быть найдена по одной из формул (10.31)  [c.932]

    В отличие от массообменных процессов класса 3(2-2)1 здесь нет компонентов, потоки которых по высоте аппарата оставались бы постоянными. Потоки газовой (G) и жидкой L) фаз также переменны по высоте аппарата, так как в каждой из фаз изменяются потоки всех трех компонентов. Здесь рабочие линии процесса массопередачи, связывающие концентрации ка-кого-либо компонента в газовой и жидкой фазах, в диаграмме у—х не были бы прямыми, так как отношение L/G по высоте аппарата не остается постоянным. Нужен какой-то иной спо- [c.951]

    Изменение величины поверхностной скорости в хемосорбционном процессе. Известно [127], что если в ходе массообменного процесса поверхностное натяжение увеличивается к низу пленочной колонны, то скорость массопередачи возрастает по сравнению со случаем, когда градиент йа1(1х отрицателен. Аналогичный эффект проявляется и в насадочных колоннах [163]. По-видимому, наличие положительного градиента йв/йх приводит к увеличению, поверхностной скорости. [c.120]

    Обращаясь к основному уравнению массопередачи М — = КАгуРх, отметим, что М — количество передаваемого из фазы в фазу вещества, зависящее от требуемой степени извлечения целевых компонентов и количества сырьевого потока, — рассчитывается из уравнения материального баланса —поверхность контакта фаз — связана с размерами, конструктивными особенностями и гидродинамикой массообменного аппарата К, Аср — коэффициент массопередачи и средняя движущая сила — определяются кинетикой процесса, природой и составом контактирующих фаз они отражают конкретные условия массообменного процесса и характеризуют его специфику. [c.55]

    Массообменные или диффузионные процессы связаны с переходом компонентов из одной фазы в другую с целью их разделения. Движущей силой массообмениых процессов является разность концентраций или градиент концентраций, а скорость процесса определяется скоростью перехода вещества из одной фазы в другую, т. е. скоростью массопередачи или скоростью диффузии. [c.216]

    Из отгонной секции колонны и из стриппингов водяной пар с потоком нефтяных паров поступает в укрепляющую часть вакуумной колонны, где его присутствие в паровой фазе снижает парциальное давление нефтяных паров и соответственно температуру. С точки зрения основного процесса массопередачи водяной пар является здесь инертным компонентом, так как не участвует в массообменном процессе между паровой и жидкой фазами. Объемная доля водяного пара в общем потоке при указанных выше расходах — от 8 до 50%, и соответственно с этим снижается концентрация углеводородных компонентов в парах. Наличие водяного пара увеличивает сечение колонны, способствует уносу легкокипящих фракций с верха вакуумной колонны, что увеличивает энергозатраты на создание вакуума и конденсацию смеси нефтяных и водяных паров. В связи с этим вопрос о влиянии водяного пара на интенсивность массопереда- [c.83]

    Основными вопросами, изучаемыми в массопередаче, являются законы фазового равновесия, позволяющие установить равновесные концентрации и направление течения процесса движущая сила массообменных процессов коэффициенты скорости массообменных процессои. [c.251]

    Совместно с И.Н.Дороховым и Э.М.Ко и>цовой получена и научно обоснована структура универсальной движущей силы массообменных процессов в гетерофазньпс ФХС, которая учитывает разность потенциалов Планка, энтальпийную и механическую состав шющие, а также составляющую, связанную с поверхностной энергией системы. Получены конкретные выражения движущих сил процессов абсорбции, ректификации, экстракции, кристаллизации, растворения, сушки, сублимации и десублимации установлена общность структуры их движущих сил, для ряда исследуемых процессов количественно вскрыто влияние градиентов поверхностного натяжения на интенсивность массопередачи. [c.12]

    Наиб, перспективные пути интенсификации массообменных процессов-использование явлений самоорганизации на межфазной пов-сти (напр., в результате возникновения локальных градиентов поверхностного натяжения), организованная нестациопарность массопередачи, воздействие пульсаций и вибраций, звуковых и ультразвуковых колебаний, электрич. и магн. полей, разработка новых гидродинамич. режимов и направленное совмещение хим. и массообменных процессов. [c.658]

    В уравнениях (3.113) --- (3.117) все коэффициенты массоотдачи и массопередачи выражены в м/с. В расчетных уравнениях коэффициенты массоот,дачи и массопередачи, как и для других массообменных процессов, часто встречаются в виде объемных коэффициентов массоотдачи или массопередачи (З а, Куй и т. д. [c.146]

    Ниже рассмотрены методы расчета высоты массообменных аппаратов. При этом следует различать два основных вида аппаратов (по принципу изменения в них концентрации в фгза. ) - аппараты с непрерывным контактом фаз и аппараты со ступенчатым контактом фаз. Расчет высоты аппаратов обоих типов основывается на общих кинетических закономерностях массообменных процессов, которые могут выражаться различными способами уравнением массопередачи, высотой единиц переноса и др. [c.27]

    На рис. 10.25,а представлена схема массообменного процесса с ИП обеих фаз (место ввода и вывода потоков здесь роли не играет), на рис. 10.25,6 — диаграммы у — х штриховые линии — векторы массопередачи, щтрих-пунктирные — векторы баланса. Диаграмма I иллюстрирует общий случай линия равновесия — кривая. Точка А у, х ) отвечает входным (сопряженным) концентрациям потоков точка В — рабочая точка процесса АВ — вектор баланса (строже здесь следовало бы говорить не об отрезке АВ, а о его крайних точках А и В)  [c.806]

    Химическая реакция, изменяя концентрации реагирующих веществ и температуру поверхности, влияет тем самым на величину поверхностного натяжения. Увеличивается вероятность возникновения флуктуаций состава и температуры на поверхности жидкости, поскольку в этом случае поверхность формируется из нескольких компонентов, число которых может заметно превышать число компонентов при физической массопередаче. Учитывая также высокую скорость протекания массообменных процессов с химической реакцией, следует ожидать при хемосорбции весьма специфичного проявления эффекта поверхностной конвекции по сравнению с физической массопередачей. Особенно это касается процессов массопередачи с необратимой химической реакцией. Как правило, такие процессы существенно неравновесны это позволяет высказать предположение о том, что отклонение подобных систем от равновесия во многих случаях превышает критическую величину. По Эбелингу [104] это является одним из необходимых условий для возникновения и развития упорядоченных конвективных структур вблизи границы раздела фаз. [c.99]

    В настоящее время определились три подхода к созданию кинетического расчета и осуществлению моделирования хемосорбционных процессов. Первый из них заключается в использовании зависимостей, основанных на эмпирических коэффици ентах массопередачи. Однако, поскольку представления о кинетике процесса, привычные для чисто массообменных процессов, в данном случае не пригодны, экстраполяция эмпирических значений Кг о. связана со значительными погрешностями. Эмпирический подход не отражает физической сущности процесса и не может объяснить, например, сильную зависимость коэффициента массопередачи при хемосорбции от концентрации передаваемого компонента в газе в барботажных колоннах и в насадочных аппаратах. Так, в аппарате с седловидной насадкой изменение Лг только с 10 до 20% (об.) приводит при определенных условиях к снижению К/а приблизительно на 307о. Количественно уменьшение К/а зависит от области протекания химической реакции, однако использование эмпирических значений Кг а при экстраполяции в сторону больших Лг приведет к существенной ошибке. В то же время следует отметить значительно более слабый характер указанной зависимости в аппаратах пленочного типа. Поэтому если мы воспользуемся эмпирической зависимостью /Сг й(Лг), найденной, скажем, в опытах на барботажной колонне, для моделирования аппарата пленочного типа, то погрешность может быть велика, причем высота моделируемого аппарата может быть завышена и занижена в зависимости от направления экстраполяции. [c.164]


Смотреть страницы где упоминается термин Массопередача массообменные процессы: [c.33]    [c.208]    [c.919]    [c.125]    [c.351]    [c.288]   
Процессы и аппараты нефтегазопереработки Изд2 (1987) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте