Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аэробное образование энергии

    Глюкоза как важнейший метаболит углеводного обмена. Общая схема источников и путей расходования глюкозы в организме. Глюкоза является основным метаболитом углеводного обмена. Основные источники глюкозы 1) пища 2) распад резервного полисахарида гликогена 3) синтез глюкозы из неуглеводных предшественников (главным образом из гликогенных аминокислот) — глюконеогенез. Основные пути расходования глюкозы 1) образование энергии при аэробном и анаэробном окислении глюкозы 2) превращение в другие моносахариды 3) превращение в гликоген и гетерополисахариды 4) превращение в жир, некоторые аминокислоты и др. В кровь глюкоза попадает из кишечника (пища), печени и почек (фермент глюкозо-6-фосфатаза). Остальные ткани потребляют глюкозу. [c.148]


    В качестве субстрата окисления могут использоваться и белки, которые распадаются на аминокислоты, способные превращаться в глюкозу или другие метаболиты аэробного процесса окисления. Однако вклад белков в образование энерг ии при мышечной деятельности составляет всего 5-10 %. [c.320]

    Выполнение любого вида работы связано с затратами энергии. Выше было показано (см. главу 15), что образование энергии в организме человека при мышечной работе осуществляется аэробным или анаэробным путем. [c.372]

    Уровень критической мощности тем выше, чем больше аэробные возможности спортсмена, т. е. чем выше индивидуальный Юз тах. При интенсивности упражнения, превышающей значение критической мощности, работа выполняется в основном за счет анаэробных источников энергии с образованием значительного кислородного долга. В этих упражнениях из-за малой эффективности анаэробного образования энергии наблюдается наибольшая скорость снижения мощности. В то же время в упражнениях субкритической мощности, когда работа выполняется главным образом за счет аэробного процесса, скорость развития утомления с увеличением предельного времени выполнения упражнения заметно снижается. Указанные особенности проявления выносливости следует учитывать при разработке тестов и отборе наиболее информативных критериев, предназначенных для количественной оценки этого физического качества. [c.392]

    По сравнению с процессами, протекающими в присутствии кислорода, брожение — эволюционно более ранняя, но энергетически менее выгодная форма извлечения энергии из питательных веществ. Процессы брожения сформировались у простейших организмов в те времена, когда атмосфера Земли не содержала кислорода. Постепенно доля брожения в энергетическом обмене уменьшалась за счет развития более эффективного аэробного пути образования энергии. К брожению способны животные, растения и многие микроорганизмы (дрожжевые грибы, бактерии). Брожение является также жизненно важным процессом и для человеческого организма. Когда поступление кислорода оказывается недостаточным, например при крайнем физическом напряжении, мышечные клетки образуют лактат путем брожения. Кроме того, в организме человека есть ткани, которые слабо снабжаются кровью и кислородом (хрусталик и роговица глаза). В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется путем сбраживания глюкозы в лактат. [c.409]


    Поскольку АТФ необходим для осуществления мн. процессов, требующих затраты энергии (биосинтез, совершение мех. работы, транспорт в-в и др.), О.ф. играет важнейшую роль в жизнедеятельности аэробных организмов. Образование АТФ в клетке происходит также благодаря др. процессам, напр, в ходе гликолиза и разл. типов брожения, протекающих без участия кислорода. Их вклад в синтез АТФ в условиях аэробного дыхания составляет незначит. часть от вклада О.ф. (ок. 5%). [c.338]

    Характерной особенностью клеток эукариот является присутствие митохондрий — сложных образований с двойной мембраной, близких по величине к бактериям (рис. 1-3 и 1-4). Внутренняя мембрана митохондрий образует многочисленные глубокие складки, так называемые кристы (гребневидные выросты). Наружная мембрана проницаема для соединений с небольшим молекулярным весом, но проникновение веществ во внутреннее пространство митохондрий (в матрикс) и выход из него находятся под строгим контролем внутренней мембраны. Хотя отдельные окислительные реакции протекают в ЭР, все же основные процессы, связанные с образованием и накоплением энергии, у аэробных организмов локализованы в митохондриях именно в этих органеллах происходит утилизация основной части кислорода. В свое время многие биохимики были крайне удивлены, обнаружив в митохондриях кольцевую ДНК с небольшим молекулярным весом. Далее оказалось, что ми- [c.33]

    Ввиду исключительной важности процессов окисления для метаболизма у аэробных организмов часто бывает весьма полезно знать свободную энергию сгорания того или иного соединения. Эти данные легко получить из свободной энергии образования. Например, АОс ацетата (водн) можно найти следующим образом  [c.227]

    Брожение является также жизненно важным процессом и для человеческого организма. Хотя в обычных условиях наши мышцы получают вполне достаточные количества кислорода, чтобы произошло окисление пирувата и образование АТР аэробным путем, бывают обстоятельства, когда поступление кислорода оказывается недостаточным. Например, при крайнем напряжении сил, когда уже весь запас кислорода израсходован, мышечные клетки образуют лактат путем брожения. Более того, в белых мышцах рыб или домашней птицы аэробный метаболизм относительно невелик, и основным конечным продуктом оказывается L-лактат. В организме человека есть такие ткани, которые слабо снабжаются кровью, например хрусталик и роговица глаза. В клетках этих тканей окислительный метаболизм выражен слабо, а энергия в основном образуется при сбраживании глюкозы в лактат. [c.345]

    При распаде 1 г-мол моносахарида при анаэробном брожении высвобождается около 84 кДж (20 ккал) энергии за счет его биохимического превращения и около 11 кДж (44 ккал) за счет теплоты растворения синтезируемого этанола в воде. Это во много раз меньше, чем при аэробном брожении с полным окислением углеводов и образованием воды и диоксида углерода. [c.1051]

    Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствии кислорода носит название эффекта Пастера. Впервые это явление наблюдал Л. Пастер во время своих широко известных исследований роли брожения в производстве вина. В дальнейшем было показано, что эффект Пастера наблюдается также в животных и растительных тканях, где кислород тормозит анаэробный гликолиз. Значение эффекта Пастера, т.е. перехода в присутствии кислорода от анаэробного гликолиза или брожения к дыханию, состоит в переключении клетки на наиболее эффективный и экономичный путь получения энергии. В результате скорость потребления субстрата, например глюкозы, в присутствии кислорода снижается. Молекулярный механизм эффекта Пастера заключается, по-ви-димому, в конкуренции между системами дыхания и гликолиза (брожения) за АДФ, используемый для образования АТФ. Как известно, в аэробных условиях значительно эффективнее, чем в анаэробных, происходят удаление и АДФ, генерация АТФ, а также регенерирование НАД, окисленного из восстановленного НАДН. Иными словами, уменьшение в присутствии кислорода количества и АДФ и соответствующее увеличение количества АТФ ведут к подавлению анаэробного гликолиза. [c.353]

    Содержание АТФ и креатинфосфата в сердечной мышце ниже, чем в скелетной мускулатуре, а расход АТФ велик. В связи с этим ресинтез АТФ в миокарде должен происходить намного интенсивнее, чем в скелетной мускулатуре. Для сердечной мышцы теплокровных животных и человека основным путем образования богатых энергией фосфорных соединений является путь окислительного фосфорилирования, связанный с поглощением кислорода. Регенерация АТФ в процессе анаэробного расщепления углеводов (гликолиз) в сердце человека практического значения не имеет. Именно поэтому сердечная мышца очень чувствительна к недостатку кислорода. Характерной особенностью обмена веществ в сердечной мышце по сравнению со скелетной является также то, что аэробное окисление веществ неуглеводной природы при работе сердечной мышцы имеет большее значение, чем при сокращении скелетной мышцы. Только 30—35% кислорода, поглощаемого сердцем в норме, расходуется на окисление углеводов и продуктов их превращения. Главным субстратом дыхания в сердечной мышце являются жирные кислоты. Окисление неуглеводных веществ обеспечивает около 65—70% потребности миокарда в энергии. Из свободных жирных кислот в сердечной мышце особенно легко подвергается окислению олеиновая кислота. [c.656]


    Процесс аэробного (кислородного) и анаэробного дыхания является не только источником энергии, необходимой для осуществления разнообразных реакций, для роста и движения, но и источником образования большого количества промежуточных продуктов, которые служат материалом для синтеза. Химические превращения при аэробном дыхании схематично можно выразить в виде следующего уравнения  [c.209]

    Трансформация энергии окисления органических соединений в макроэргические связи АТФ в аэробных условиях происходит преимущественно путем окислительного фосфорилирования. Свободная энергия, необходимая для образования АТФ, генерируется в дыхательной окислительной цепи митохондрий (15.3.2). [c.192]

    В аэробных условиях реакции гликолиза, остановившиеся на стадии образования пирувата (непосредственного предшественника лактата), составляют первую, начальную фазу деструкции углеводов, связанную далее с циклом трикарбоновых кислот. Гликолиз и цикл трикарбоновых кислот приводят к полному окислению глюкозы до СО2 и вьщелению больших количеств метаболической энергии (АТФ). [c.243]

    Биологические методы применимы для очистки промышленных сточных вод от органических веществ, которые используются микроорганизмами в качестве питательных веществ и источников энергии и при этом подвергаются деструктивному распаду — окислению при аэробной и восстановительным процессам с образованием метана при анаэробной очистке. [c.1090]

    Аэробное образование энергии в эритроцитах гексозомонофосфатный путь [994]. В левой части рис. 4.3 представлена цепь аэробных реакций, так называемый гексозомонофосфатный цикл, известный также, как пентозофосфатный цикл, или шунт. Основное его назначение-формирование восстановительного потенциала клетки в виде NABPH. В ходе реакции, катализируемой глюкозо-6-фосфат—дегидрогеназой, происходит окисление глюкозо-6-фосфата с образованием 6-фосфоглюко-ната [1030], который в результате ряда последовательных этапов превращается в В-рибозо-5-фосфат. [c.21]

    С увеличением мощности выполняемой работы уровень потребления 2 и скорость аэробного энергообеспечения возрастают до максимальных значений. Мощность, при которой достигается максимальное потребление кислорода, называется критической (И/ ). До достижения критической мощности любое увеличение тяжести работы сопровождается пропорциональным усилением аэробных процессов ресинтеза АТФ, а после достижения критической мощности — только за счет анаэробных процессов, развитие которых начинается при мощности ниже критической. Мощность упражнения, при которой обнаруживается усиление анаэробных реакций, называется порогом анаэробного обмена (И рд д). У людей, не занимающихся спортом, ПАНО отмечается при 50 % критической мощности, у спортсменов различных видов спорта — 60—75 %, у специализирующихся на выносливость — 85—90 %. После превышения ПАНО доля анаэробных реакций в энергетическом обеспечении работы резко возрастает за счет увеличения скорости гликолиза. Следовательно, гликолиз как механизм энергообразования ведущую роль играет при мощности, составляющей 60—85 % максимальной. Мощность, при которой достигается наивысшее развитие гликолитического процесса, называется мощностью истощения (И/ ст)- Максимально возможная для человека мощность обозначается как максимальная анаэробная мощность (И/ а). При такой мощности предельных значений достигает скорость образования энергии в креатинфосфокиназной реакции. [c.345]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Аэробное дыхание - это процесс, обратный фотосинтезу, то есть синтезированное органическое вещество - глюкоза СбН120б разлагается с образованием углекислого газа и воды и при этом высвобождается потенциальная энергия Q , аккумулированная в этом веществе  [c.13]

    В невозмущенной человеком биосфере азотфиксация и нитрификация в масштабах планеты почти полностью уравновешиваются противоположным процессом, называемым денитрифи кацией. Образование молекулярного азота из органических соединений, нитратов и нитритов происходит в почвах и водных экосистемах в аэробных и анаэробных условиях. Денитрификация не всегда приводит к выделению молекул N2. Она может завершаться также образованием оксидов азота. Например, в анаэробном окружении многие микроорганизмы используют нитраты и нитриты в качестве источника энергии и акцептора электронов при дыхании  [c.63]

    У аэробных организмов восстановленные формы переносчиков водорода вновь окисляются молекулярным кислородом в цепи переноса электронов, получившей название дыхательной цепи (на рис. 7-1 показано в центральной части рисунка под окружностью). Окисление NADH (восстановленного NAD+) кислородом характеризуется значительным уменьшением свободной энергии (при pH 7 величина ДС составляет —219 кДж-моль ) и сопровождается образованием трех молекул АТР (из ADP и неорганического фосфата). Этот процесс, называемый окислительным фосфорилированием (гл. 10), представляет собой главный путь накопления биологически полезной энергии (в форме АТР), высвобождающейся при расщеплении жиров в организме человека. [c.84]

    Один из центральных вопросов современной биохимии заключаете в том, каким образом поток электронов по цепи переносчиков приэодц к образованию АТР. Вопрос этот очень важен, так как большая часть АТР, образующегося в аэробных и некоторых анаэробных организмах, генерируется именно в процессе окислительного фосфорилирования. Более того, энергия, улавливаемая в процессе фотосинтеза, идет на образование АТР с помощью очень сходного процесса. Механизм генерирования АТР может быть тесно связан с функционированием мембран при транспорте ионов. Вполне возможно, что механизм окислительного фосфорилирования в известном смысле является обратным механизму использования энергии АТР для мышечного сокращения. [c.391]

    Некоторые галофильные бактерии способны использовать энергию света для образования АТР с помощью процесса, который не похож на фотосинтез у растений или бактерий. В частности, Н. halobium используют для образования АТР обычное аэробное дыхание, если имеется в достаточном количестве необходимый для этого кислород. В условиях же нехватки кислорода в клеточной мембране этих бактерий появляются специфические пурпурные образования, так называемые заплаты (pat hes). Пигмент, обусловливающий их пурпурную окраску, представляет собой белок бактериородопсин. Последний служит фоторецептором в процессе превращения энергии света в протонный градиент, который в свою очередь является движущей силой синтеза АТР с помощью хемиосмотического механизма. Фоточувствительная пурпурная мембрана состоит из липопротеинового матрикса, причем с помощью дифракции рентгеновских лучей показано, что молекулы бактериородопси-на расположены в этой мембране в виде жесткой двумерной решетки. [c.377]

    В присутствии кислорода главным источником энергии для аэробных организмов становится окислительное фосфорилирование. Пировиноградная кислота — конечный продукт пути Эмбдена — Мейергофа — Парнаса — претерпевает в этих условиях декарбоксилирование с окислением и ацилирует коэнзим А. Образующийся при этом ацетялкозкзида А . может вступать в цикл трикарбоновых кислот, приводящий к полному экислению до двух молекул СОа с образованием пяти молекул восстановленных пиридиновых и флавиновых нуклеотидов, что соответствует синтезу 15 молекул АТФ. [c.370]

    Важную роль в аэробном метаболизме пропионовых бактерий играет флавиновое дыхание , которому приписывают основную связь этих бактерий с молекулярным кислородом. В процессе фла-винового дыхания происходит перенос двух электронов с фла-вопротеинов на О2, сопровождающийся образованием перекиси водорода, которая разлагается бактериальной каталазой и перок-сидазой. Однако флавиновое дыхание не связано с получением клеткой энергии. Транспорт электронов в дыхательной цепи некоторых пропионовых бактерий сопровождается образованием АТФ, что может указывать на подключение к этому процессу ци-тохромов, однако эффективность окислительного фосфорилирования низка. Последнее, вероятно, объясняется несовершенством механизмов сопряжения. В то время как в аэробных условиях конечным акцептором электронов с НАД Н2 является О2, в анаэробных условиях им может быть нитрат, фумарат. [c.231]

    Способы получения архебактериями энергии включает бес-хлорофилльный фотосинтез, брожение, аэробное и анаэробное дыхание, при котором конечными акцепторами электронов могут быть СО2 и другие С,-соединения, молекулярная сера, N0 , Ре " и Мо . У организмов, получающих энергию с использованием электронного транспорта, в качестве электронпереносящих компонентов обнаружены ферредоксины, хиноны, цитохромы. Электронный транспорт сопряжен с трансмембранным переносом протонов. Механизм окислительного фосфорвдирования архебактерий соответствует хемиосмотическому принципу и сходен с аналогичным механизмом эубактерий и митохондрий. В то же время следует подчеркнуть, что архебактериям свойственны типы энергетического метаболизма, не встречающиеся у эубактерий и эукариот. Это бесхлорофилльный фотосинтез и особый тип анаэробного дыхания, в процессе которого происходит образование метана. [c.415]

    Все низкомолекулярные компоненты клеток должны в определенных условиях подвергаться деградации. Иногда деградация должна обеспечить удаление скопившихся излишков тех или иных соединений. В ряде важных случаев такая деградация является поставщиком необходимых строительных компонентов и обеспечивает биоэнергетические потребности организма. Так, в 1.2 уже отмечалось, что окисление глюкозы и других органических соединений атмосферным кислородом является важнейшим источником энергии у аэробных, не способных к фотосинтезу организмов. Процессы окислительной и неокислительной деструкции также являются многостадийными и проходят через ряд промежуточных соединений. Например, важным этапом окислительной деградации глюкозы является ее превращение в соль пировиноградной кислоты — пируват СНзСОСОО". Этот процесс, который детально рассматривается в 8.2, проходит через образование девяти промежуточных соединений. Дальнейшее полное сгорание цирувата до СО2 и воды проходит еще через одиннадцать промежуточных веществ (см. 8.4). [c.59]

    К первому классу ферментов относятся практически все ферменты, катализирующие окислительно-восстановительные превращения. Эти ферменты называются оксидоредуктазами. Их систематическое название складывается из названия восстановителя (дЬнора электронов), окислителя (акцептора электронов) и названия класса. Например фермент, катализирующий окисление этанола до ацеталь-дегида с использованием NAD в качестве окислителя, по систематической номенклатуре называют алкоголь NAD -оксидоредуктаза. Следует сразу же подчеркнуть, что квалификация одного из участников реакции как донора, а другого как акцептора электронов в ряде случаев имеет условный характер, поскольку реакция может сопровождаться небольшим изменением энергии Гиббса и в зависимости от условий протекать в живых системах в одном или другом направлении. Например, при поступлении этанола в живой организм в аэробных условиях реакция протекает в сторону образования ацетальдегида, а в условиях спиртового брожения обеспечивает превращение образующегося из глюкозы ацетальдегида до этанола. [c.129]


Смотреть страницы где упоминается термин Аэробное образование энергии: [c.391]    [c.391]    [c.297]    [c.391]    [c.391]    [c.310]    [c.227]    [c.227]    [c.141]    [c.310]    [c.372]    [c.220]    [c.414]    [c.656]    [c.138]    [c.529]    [c.135]    [c.261]   
Генетика человека Т.3 (1990) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия образования

аэробные



© 2025 chem21.info Реклама на сайте