Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа ионизации группы

    Таким образом, степень ионизации слабого полиэлектролита с Л/ ионогенными группами зависит от Л/ различных констант ионизации. Удаление первого протона от поликислоты характеризуется константой диссоциации Ка, не искаженной электростатическим влиянием других групп, а свободная энергия реакции диссоциации первой группы равна —кТ In Ка- Обозначим константу диссоциации неко- [c.50]


    Успешное применение уравнения Гаммета к оценке эффектов мета- и пара-заместителей вызвало естественные попытки применить его также и к орго-заместителям [62]. Влияние группы в орто-положении на скорость реакции или константу равновесия называют орто-эффектом [63]. Несмотря на многочисленные попытки разработать количественную оценку ортоэффектов, до настоящего времени не удалось создать приемлемого набора соответствующих величии. Однако подход Гаммета можно с успехом использовать для орто-замещенных соединений о-ХСеН4 , в которых группа V отделена от ароматического кольца например, для соединений 0-ХС6Н4ОСН2СООН наблюдается хорошая корреляция с константами ионизации [64]. [c.373]

    В соответствии с принятым определением заместители, повышающие электронную плотность на реакционном центре и, тем самым, затрудняющие отрыв протона при диссоциации карбоксильной группы, понижают константу ионизации соответствующей замещенной бензойной кислоты и характеризуются отрицательным значением а. Заместители, понижающие электронную плотность на реакционном центре, имеют ст > 0. [c.128]

    Символы Е, ЕН, ЕНг и т. д. описывают состояния ионизации групп фермента, которые участвуют в ферментативной реакции. Ионизация остальных групп белковой глобулы здесь вообще не рассматривается. Будем полагать, что константы диссоциации ионогенных групп в свободном ферменте (/Са, /Св) и в фермент-субстратном комплексе (/ a. К ъ) различны [в принципе схема (6.177) может описывать и реакцию фермента, активный центр которого содержит четыре ионогенные группы, две из которых функционируют в свободной форме фермента, и две — в фермент-субстратном комплексе]. [c.259]

    Константы скорости прямых стадий можно найти из рКа соответствующей функциональной группы и константы скорости обратной (диффузионно-контролируемой) реакции в виде 10 Ка-с и (10 - lu)/ < a M соответственно, где Ка — константа кислотной диссоциации ВН /С( — константа ионизации воды. Константа скорости всего процесса имеет максимальное значение, равное с , при условии Ка 10 М. Действительно, при Ка < Ю М меньше, чем 10 с , становится константа скорости диссоциации кислоты ВН (реакция а) с другой стороны, если Ка > 10 М, меньше, чем предельное значение 10 , становится константа скорости гидролиза основания (реакция б). Таким образом, максимальная константа скорости кислотно-основного катализа с участием воды равна 10 с  [c.273]


    В соответствии с проблемой корреляции спектроскопических и физико-химических параметров замещенных фенолов с константами заместителей проведены исследование и корреляционный анализ химических сдвигов 8 (ОН) 133 и констант ионизации рК 213 производных фенола, полученных экспериментально или на основании литературных данных. С целью исключения влияния концентрационной зависимости химических сдвигов ОН-групп и получения сравнимых данных по величинам 8 (ОН) для исследованной серии замещенных фенолов измерения 8 (ОН) проведены в растворах комплексообразующих растворителей — диметилсульфоксида (ДМСО) и гексаметилфосфорамида (ГМФА). Эксперименты показали, что в указанных растворителях в интервале концентраций 5—20% 8 (ОН) не зависит от концентрации. Все измерения проведены при 20°С на частоте 60 Мгц. Константы ионизации рК определялись в воде и метаноле при 25°С методом УФ спектроскопии. При отсутствии чистых образцов фенолов операции очистки проводились методами ректификации, молекулярной перегонки, перекристаллизации и адсорбционно-жидкостной хроматографии. Исследуемые соединения и растворители очищались от следов воды. [c.27]

    Разработаны высокоэффективные методы синтеза новых 2-амино-5-замещенных 1,3,4-тиадиазолов на основе арилтио-, арилсульфонилуксусных и пропионовых кислот, определены спектрофотометрическим методом их константы ионизации. Экспериментально установлено, что в растворах 2-амино-1,3,4-тиадиазолы на основе сульфонил-пропионовых кислот имеют место неизученные до сих пор взаимодействия с гидроксильными i pynnaMH щелочей, спиртов и воды. Изучены реакции ацилирования 2-амино-5-замещенных 1,3,4-тиадиазолов хлорангидридами сульфо- и карбоновых кислот. Продолжено изучение синтетических возможностей бифункциональных ангидридов замещенных сульфокарбоновых кислот. Использование различной реакционной способности хлорангидридной и сульфохлоридной группы в реакциях ацилирования гетероциклических аминов и аминов, содержащих такие функциональные группы, как -СООН, -ОН, и др. открывает путь к новым сложнозамещенным производным сульфоновых кислот. [c.51]

    В работах Штейнера [П и Т. М. Бирштейн [ ] было теоретически исследовано влияние ионизации оснований на переход спираль — клубок в полинуклеотидной цепи, а также влияние такого перехода на кривые титрования, т. е. кривые зависимости степени ионизации а макромолекулы от величины pH раствора. Предположим, по-прежнему, что нуклеотидные, остатки двух цепей могут соединяться друг с другом единственным образом и не будем учитывать гетерогенности состава молекулы. Каждая пара оснований молекулы может находиться в одном из трех состояний состояние О—пара мономерных единиц не связана водородной связью и не заряжена, состояние О —пара мономерных единиц не связана водородной связью и заряжена, состояние 1—пара мономерных единиц связана водородной связью и не заряжена. Поскольку ионизацию, не сопровождаемую разрывом водородной связи, мы считаем невозможной, состояние 1, в котором пара мономерных единиц заряжена и связана водородной связью, не рассматривается. Мы приписываем здесь каждой паре оснований одно заряженное состояние, поскольку константы ионизации групп —К Нг и —NH—СО— сильно различаются, так что области титрования этих групп не перекрываются, и их можно рассматривать независимо. Будем в дальнейшем для определенности считать, что заряжается кислотная группа —NH—СО—, т. е. речь идет о щелочной области pH. Ионизацию фосфатных групп мы по-прежнему не учитываем, так как в рассматриваемом диапазоне pH состояние их ионизации не меняется. Энергия электростатического взаимодействия фосфатных групп с зарядами пуриновых и пиримидиновых оснований, являющаяся функцией ионной силы раствора, может быть введена в константу ионизации этих оснований. [c.373]

    Наряду с влиянием конформационной структуры на значение констант ионизации существенным может оказаться также отличие электростатических взаимодействий ионизованных групп в разных конформациях. В компактных структурах — спираль— глобула — ионизуемые группы ближе расположены друг к другу, чем в рыхлом клубке, поэтому энергия их электростатического взаимодействия в первом случае больше, и кривая титрования идет более полого, чем в случае клубка. Этот эффект особенно существен тогда, когда константы ионизации групп в различных конформациях одинаковы, так что отличие в кривых титрования целиком обусловливается электростатическим взаимодействием ионизованных групп. [c.21]

    Kix, Kiy константы ионизации групп X и Y на первой [c.147]

    К2х, Kiy константы ионизации групп X и У на второй [c.147]

    Таким образом, степень ионизации слабого полнэлектролита с N ионогенными группами зависит от N различных констант ионизации. Удаление первого протона от поликислоты характеризуется константой диссоциации Ко, не искаженной электростатическим влиянием других групп, а свободная энергия реакции диссоциации первой группы равна —kT In /(о. Обозначим константу диссоциации некоторой п-й группы через Кп- Тогда свободная энергия диссоци-ацни этой группы составит —кТ пКп- Так как к моменту отщепления п-й группы макроион уже обладает свободной электростатической энергией то можно записать [c.58]


    Она является четырехосновной кислотой. При ионизации сначала отщепляются ионы водорода карбоксильных групп К = l,01 10 Ki == 2,14-10 . Отщепление ионов водорода, связанных с азотом, характеризуется значительно меньшими константами ионизации К = 6,92 х [c.152]

    Дикарбоновые кислоты имеют две константы ионизации в соответствии с ионизацией двух карбоксильных групп. Сравнение значений р 1 и рК2 для ряда дикарбоновых кислот, где карбоксильные группировки разделены все возрастающим числом углеродных атомов, показывает, что с увеличением расстояния между карбоксилами два р/Са становятся одинаковыми и приближаются к р/Са алифатических монокарбоновых кислот. Однако, когда две карбоксильные группы расположены в молекуле рядом, р/С1 и рЛ г заметно различаются. В этих случаях р/к1 имеет низкое значение, так как одна недиссоци-ированная карбоксильная группа действует как электроотрицательный заместитель, повышая кислотность второй группы (разд. 8.2.1). р/С2 намного больше, чем поскольку отри- [c.185]

    Спектроскопические свойства гидроксильной группы представляют большой интерес для структурного анализа замеш,енных фенолов. Экспериментальные данные показывают влияние изомерии на сдвиг ДуОН, и, следовательно, энергию межмолекулярной водородной связи (МВС). В ряду орто-, мета- и пара-изомеров алкилфенолов частота у(ОН)мвс уменьшается, а смещение ДуОН увеличивается соответственно возрастает прочность водородной связи. При этом большее различие в величинах частот наблюдается у орто- и пара- и у орто- и мета-изомеров аналогичные параметры у мета- и пара-изомеров отличаются незначительно. Этот факт иллюстрирует наибольшее стери-ческое влияние на ОН-фуппу орто-заместителя. Влияние сказывается как на спектроскопических параметрах (частота, полуширина и интенсивность полосы поглощения), так и на физико-химических свойствах гидроксила (дипольный момент, способность к образованию водородной связи, константа ионизации). Так, последовательному ряду орто-заместителей 2—СНз 2-изопропил- 2-втор-бутил->2-трет-бутил соответствует следующий ряд значений уОН вс 3435-> ->3480->3485 3540 см->. Чем больше объем орто-радикала, тем больше степень экранирования ОН-фуппы и тем выше сдвиг ДуОН по сравнению с незамещенным фенолом. [c.13]

    Подобно соотношениям Бренстеда для соединений типа I, логарифмы констант скоростей реакций, протекающих в боковой цепи У, или логарифмы констант равновесий, затрагивающих группу У, линейно связаны с константами ионизации соответствующих бензойных кислот, имеющих те же заместители [c.166]

    Рассмотрим определение констант ионизации вещества АН с двумя способными к ионизации группами. Процесс ионизации вещества АН протекает по схеме [c.277]

    Поскольку четыре микроскопические константы ионизации нельзя определить из кривых титрования, необходимо было использовать спектрофотометрпческий анализ в ультрафиолетовой области для группы R—S . р/< = 8,65 бетаиновой структуры цистеина (ионизация тиола в ирисутствии положительно заряженного атома азота) и р/( = 8,75 S-метилцистеина (ионизация аминогруппы в присутствии нейтрального атома серы) близки к значениям и 2 для диссоциации ио выше приведенным механизмам и свидетельствуют, что эти величины должны иметь близкие значения (табл. 2.1). Здесь надо вновь отметить важный вклад индуктивного эффекта и эффекта ноля, обусловливающих различие рКа этих соединений от рКа обычных алкилмеркаитанов и аминов. [c.43]

    Кд представляет собой константу ионизации первой карбоксильной группы характеризует потерю второй (менее кислой) карбоксильной группы после того, как отдала протон первая (бол ее кислая) карбоксильная группа. [c.133]

    К а р п о в О. П., П л и е в Т. Н. Корреляция между химическими сдвигами протонов ОН-групп в спектрах ЯМР и константами ионизации рК фенолов с константами заместителей. Журнал прикладной спектроскопии. 1975, т. 23, № 6, с. 1034. [c.106]

    В качестве однотипных катализаторов использовались четыре группы органических оснований катионы с двумя зарядами, элек-тронейтральные молекулы, анионы с одним зарядом и анионы с двумя зарядами. В каждой из этих групп наблюдается линейная зависимость между логарифмом константы скорости разложения нитрамида и логарифмом константы ионизации катализатора в данном растворителе. [c.425]

Рис. 106. Определение констант ионизации ионогенных групп активного центра клострипаина, контролирующих реакцию гидролиза этилового эфира Ы-бензоил-1-арги-нина [45] Рис. 106. <a href="/info/426731">Определение констант ионизации</a> ионогенных <a href="/info/1376395">групп активного центра</a> <a href="/info/489807">клострипаина</a>, <a href="/info/96535">контролирующих реакцию</a> <a href="/info/1036552">гидролиза этилового эфира</a> Ы-бензоил-1-арги-нина [45]
Рис. 109. Определение констант ионизации ионогенных групп активного центра клострипаина, контролирующих реакцию гидролиза Рис. 109. <a href="/info/426731">Определение констант ионизации</a> ионогенных <a href="/info/1376395">групп активного центра</a> <a href="/info/489807">клострипаина</a>, <a href="/info/96535">контролирующих реакцию</a> гидролиза
    СНзСООН, Ha l OOH, H I2 OOH, I3 OOH константы ионизации изменяются в такой последовательности 1,754 10 1,38 -10- 5,6-10-2 2,2-10 2. Гидроксил карбоксильной группы можно. заместить другими группами. Так, при взаимодействии со спиртами образуются сложные эфиры (реакция этери-фикации)  [c.121]

    Экспериментальные и литературные данные по рКа иллюстрируют глубокую взаимосвязь между структурой алкилфенолов и их протоно-донорными свойствами в процессах ионизации. Алкильные группы, как электронодонорные заместители, уменьшают константу диссоциации фенола электроноакцепторные заместители повышают константу диссоциации. рК зависит от а) природы заместителя, б) химического строения радикала и его положения по отношению к ОН-группе, в) числа алкильных заместителей и их относительного расположения в кольце. В значениях рК наблюдается аддитивность, поэтому величину константы ионизации полизамещенных алкилфенолов можно предсказать на основании соответствующих инкрементов для радикалов в о-, м- и п-положениях. Роль стерических факторов ярко проявляется в ряду орто-замещенных алкилфенолов. Эффект сте-рического экранирования сольватации объемистыми орто-заместите-лями возрастает при переходе от НОН к СН3ОН. [c.25]

    Амфотерные (амфолитные) ПАВ содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от pH р-ра. Обычно эти ПАВ включают одну нли неск. основных и кислотных групп, могут содержать также и неионогенную полигликолевую группу. В зависимости от величины pH они проявляют св-ва катионактивных или анионактивных ПАВ. При нек-рых значениях pH, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно р-римых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентированные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. В принципе вместо N м. б. атомы S, Р, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы. [c.587]

    Величина, характеризующая основность соединения, использовалась ранее для изучения взаимодействия тяжелого метилового спирта с основаниями различной силы [125], а также кислотности гидроксильных групп поверхности окисных катализаторов [151а]. В обоих случаях между ИК-смещением полосы и основностью взаимодействующего соединения (р/( ) отмечались линейные зависимости. Проведенное нами сопоставление между кислотной константой ионизации оснований рКа (значения взяты из [1516]) и величиной энергии Н-связи (табл. 10 показало, что зависимость между этими параметрами линейная (рис. 15). [c.43]

    Константы ионизации карбоксильных групп слабокислотного катионита КБ-4 находятся в пределах Ю —10 . Следовательно при pH 4—6 лишь половина функциональных групп смолы ионизирована, а практически полная обменная емкость катионита может быть использована лишь при рН>7. Слабокислотные же смолы отличаются высокой избирательностью поглощения мпогозарядных катионов и используются преимущественно для умягчения воды, т. е. для обмена ионов Ыа+ на катионы и Мд2+. [c.205]


Смотреть страницы где упоминается термин Константа ионизации группы: [c.82]    [c.181]    [c.142]    [c.216]    [c.277]    [c.523]    [c.276]    [c.87]    [c.22]    [c.304]    [c.588]    [c.588]    [c.363]    [c.205]    [c.205]    [c.9]    [c.26]    [c.38]   
Основы ферментативной кинетики (1979) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Константа ионизации



© 2025 chem21.info Реклама на сайте