Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы, метаболизм соединениями

    Биохимическая классификация основана на разграничении природных соединений согласно путям их биосинтеза различают вещества первичного метаболизма (углеводы, аминокислоты [c.7]

    Большое число продуктов метаболизма растений и микроорганизмов выделено и идентифицировано задолго до начала экспериментального изучения биосинтеза природных соединений это позволило создать классификацию, основанную на сходстве химических структур. Основные классы природных соединений (терпены, стероиды, алкалоиды, фенолы, углеводы, пигменты и т. д.) формировались по признаку наличия в их молекулах тех или иных характерных группировок. [c.351]


    В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и биохимию микроорганизмов. Несмотря на биохимическое единство всего живого, существуют и коренные различия как химического состава, так и обмена веществ в животных и растительных организмах. Обмен веществ, или метаболизм,—это совокупность всех химических реакций, протекающих в организме и направленных на сохранение и самовоспроизведение живых систем. Известно, что растения строят сложные органические вещества (углеводы, жиры, белки) из таких простых, как вода, углекислый газ и минеральные вещества, причем энергия, необходимая для этой синтетической деятельности, образуется за счет поглощения солнечных лучей в процессе фотосинтеза. Животные организмы, напротив, нуждаются в пище, состоящей не только из воды и минеральных компонентов, но содержащей сложные вещества органической природы белки, жиры, углеводы. У животных проявления жизнедеятельности и синтез веществ, входящих в состав тела, обеспечиваются за счет химической энергии, освобождающейся при распаде (окислении) сложных органических соединений. [c.15]

    Обмен белков занимает особое место в многообразных превращениях веществ, характерных для всех живых организмов. Выполняя ряд уникальных функций, свойственных живой материи, белки определяют не только микро- и макроструктуру отдельных субклеточных образований, специфику организации клеток, органов и целостного организма (пластическая функция), но и в значительной степени динамическое состояние между организмом и окружающей его средой. Белковый обмен строго специфичен, направлен и настроен, обеспечивая непрерывность воспроизводства и обновления белков организма. В течение всей жизнедеятельности в организме постоянно и с высокой скоростью совершаются два противоположных процесса распад, расщепление органических макромолекул и надмолекулярных структур и синтез этих соединений. Эти процессы обеспечивают катаболические реакции и создание сложной структурной организации живого из хаоса веществ окружающей среды, причем ведущую роль в последнем случае играют именно белки. Все остальные виды обмена подчинены этой глобальной задаче живого—самовоспроизведению себе подобных путем программированного синтеза специфических белков. Для осуществления этого используются энергия обмена углеводов и липидов, строительный материал в виде углеродных остатков аминокислот, промежуточных продуктов метаболизма углеводов и др. [c.409]


    Все физические и химические процессы, связанные с построением содержащихся в организме веществ из продуктов питания (углеводов, жиров и белков), а также с превращением таких веществ и разрушением химических соединений в организме описывают общим термином обмен веществ (метаболизм). Для веществ, которые имеют значение при обмене веществ и в процессе роста организма, обычно используют термин метаболиты. [c.698]

    Последующие исследования подтвердили высказанное Г. Кребсом положение о центральной роли ЦТК в распаде веществ в организме до конечных продуктов Oj и HjO. Наряду с окислительным декарбоксилированием пирувата этот процесс относится к общим путям катаболизма и является конечным путем окислительного катаболизма всех видов биомолекул (углеводы, липиды, аминокислоты), которые в аэробных условиях либо превращаются в ацетил-КоА, либо в промежуточные соединения ЦТК. Следовательно, ЦТК вьшолняет функции единого интегрального механизма, взаимосвязи и взаимозависимости процессов клеточного метаболизма (рис. 19.2). [c.264]

    Процесс превращений органических и биоорганических субстратов, который подде )живает нормальное функционирование живого организма, называют метаболизмом. Такими субстратами являются в том числе и биологически активные соединения, постоянно образующиеся и трансформирующиеся в организме. В частности, можно говорить о метаболизме углеводов как о биохимическом цикле, поддерживающем энергетический потенциал организма (см. гл. 26). Процессы метаболизма углеводов, белков и липидов относят к первичным метаболическим процессам. Эти процессы протекают аналогично во многих живых организмах и определяются общими элементами генетического кода этих организмов. [c.462]

    Имины играют важную роль во многих биологических реакциях, в частности при взаимопревращении аминокислот и карбонильных соединений — производных белков — и при метаболизме углеводов (разд. 8.4,В и гл. 15). [c.155]

    Способность восстанавливать углеродные соединения с помощью солнечной энергии позволила появившемуся живому организму усваивать двуокись углерода, возможно в виде иона карбоната или бикарбоната, из окружающего первичного океана и использовать эту двуокись углерода в качестве источника атомов углерода для образования молекул сахаров и других питательных молекул. Эта реакция составляет сущность процесса фотосинтеза. В зеленых растениях при фотосинтезе происходит восстановление двуокиси углерода до альдегида (углевода), при котором вода служит первичным источником атомов водорода, а в атмосферу выделяется высвобождаемый при таком восстановлении кислород. Так же как и при анаэробном метаболизме (см. разд. Первичный метаболизм ), каждая реакция, входящая в процесс фотосинтеза, требует участия строго специфического фермента. [c.39]

    Важнейшие классы биоорганических соединений, без которых невозможен метаболизм на самом низком уровне, — это белки, углеводы и липиды. [c.505]

    Органические кислоты — важные детали биологических машин. Они действуют в процессах, которые связаны с использованием энергии пищевых веществ с участием кислот в системах ферментов протекают стадии постепенной перестройки и окисления молекул углеводов, жиров и аминокислот. Некоторые из карбоновых кислот получаются и расходуются в процессах обмена веществ (метаболизм) в очень внушительных количествах. Так, в течение суток в организме человека образуется 400 г уксусной кислоты. Этого количества хватило бы для изготовления 8 л обычного уксуса. Возникновение и распад любого вещества в столь больших масштабах, конечно, означает, что это вещество необходимо для выполнения каких-то ответственных функций. Анализ обнаруживает в клетках организмов и целый ряд других кислот, причем большинство из них является соединениями со смешанной функцией, т. е., помимо группы СООН, эти кислоты содержат другие группы, например СО, ОН и т. п. [c.41]

    На этой схеме основные питательные вещества для высокоорганизованных живых организмов представлены углеводами, липидами и белками они превращаются через многие другие более простые соединения в углекислый газ, воду и соединения азота. Эти превращения осуществляются посредством реакций, катализируемых ферментами. Основная роль ферментов — катализ реакций обмена, за счет которых осуществляется сохранение, рост и репродукция живых организмов. Обмен (метаболизм) включает два точно сбалансированных процесса, а именно анаболизм, или использование энергии и материалов для химических синтезов, и катаболизм, или расщепление субстратов с освобождением энергии. Каждая ступень в сложной [c.112]


    Скорость окислительных стадий цикла определяется скоростью реокисления NADH в цепи переноса электронов. При некоторых условиях ее может лимитировать скорость поступления Ог. Однако в аэробных организмах она обычно определяется концентрацией ADP и (или) Р , доступных для превращения в АТР в процессе окислительного фосфорилирования (гл. 10). Если в ходе катаболизма образуется больше АТР, чем это необходимо для энергетических потребностей клетки, концентрация ADP падает до низкого уровня, выключая, таким образом, процесс фосфорилирования. Одновременно АТР, присутствующий в высоких концентрациях, действуя по принципу обратной связи, ингибирует процессы катаболизма углеводов и жиров. Это ингибирование осуществляется во многих пунктах метаболизма, часть которых показана на рис 9-3. Важным участком, на котором осуществляется такое ингибирование, является пируватдегидрогеназный комплекс (гл 8, разд К2) [19]. Другим таким участком сложит цитратсинтетаза— фермент, катализирующий первую реакцию цикла трикарбоновых кислот [20]. Правда, существуют сомнения относительно того, имеет ли такое ингибирование физиологическое значение [16]. Уровень фосфорилирования аденилатной системы может регулировать работу цикла еще и другим способом, связанным с потребностью в GDP на стадии е цикла (рис. 9-2). В митохондриях GTP в основном используется для превращения АМР в ADP. Следовательно, образование GDP зависит от АМР — соединения, которое образуется в митохондриях при использовании АТР для активации жирных кислот [уравнение (9-1)]. [c.324]

    Хиральность свойственна и белкам, и углеводам, и нуклеиновым кислотам, и ряду низкомолекулярных соединений в клетке. Углеводы в ДНК и РНК всегда фигурируют в D-форме, Азотистые основания имеют плоское строение и, следовательно, лишены х1фальности. В процессах метаболизма, происходящих без рацемизации, т. е. без превращений зеркальных антиподов друг в друга, клетка усваивает лишь те из них, которым отвечают структуры ее биологических молекул. Организм усваивает L-, но не / -аминокислоты. Попав в антимир , в котором растения и животные содержат молекулы с противоположными конфигурациями, земной организм погиб бы от голода Для организма D- и -антиподы разнятся. Известны вещества, ядовитые в одной форме и безвредные в зеркальной форме -аспарагиновая кислота безвкусна, ее антипод сладок. Еще Пастер установил, что некоторые бактерии питаются преимущественно одним антиподом данного вещества. [c.44]

    Метилглиоксаль (2-оксопропаналь) можно получить окислением ацетона диоксидом селена или через 1-оксиминопропанон. Желтое, маслянистое соединение (т. пл. 72 °С), образует светло-зеленые пары. Метилглиоксаль является промежуточным продуктом метаболизма углеводов. [c.369]

    В круговороте веществ на земле углеводы занимают промежуточное место между неорганическими и органическими соединениями. Они являются первичными продуктами фотохимического восстановления двуокиси углерода — главного и, вероятно, единственного пути биосинтеза органических веществ в современных геологических условиях. Моносахариды в результате последующих превращений образуют полисахариды — необходимые компоненты любой живой клетки. С другой стороны, при распаде моносахаридов выделяется энергия, требуемая для синтетических процессов в организме, и образуются продукты, являющиеся исходными веществами для биосинтеза других полимеров живой клетки белков, нуклеиновых кислот и липидов. Все сказанное определяет большое разнообразие биохимических реакций моносахаридов и их центральное лоложение в метаболизме живой клеткк [c.363]

    Аминокислоты в организме прежде всего используются для синтеза белков и пептидов. Кроме этого, ряд аминокислот служат предшественниками для образования соединений непептидной природы пуриновых и пиримидиновых оснований, биогенных аминов, порфиринов (в том числе гема), никотиновой кислоты, креатина, холина, таурина, тироксина и ряда других. Из углеродного скелета гликогенных аминокислот синтезируются углеводы, кетогенных — липиды и кетоновые тела. Основным органом метаболизма аминокислот является печень, где происходят многие синтетические процессы, связанные с использованием аминокислот, а также важный процесс перераспределения избыточных количеств, потребляемых с пишей углеродных цепей аминокислот и азота. [c.369]

    Еще одним повсеместно распространенным в природе соединением является шикимовая кислота 1.162. Она образуется в результате метаболизма углеводов. Значение ее для химии природных соединений состоит в том, что шикимат служит родоначальником многих ароматических соединений (см. гл. 3). [c.53]

    Некоторые микроорганизмы не способны полностью обеспечить собственный метаболизм за счет своих синтетических возможностей и нуждаются в наличии минимально одного органического соединения (обычно нужны аминокислоты как источник углерода и азота или углеводы в качестве источника углерода) в окружающей среде. Гетеротрофные (от греч. hetera, другой, + trophe, питание) бактерии в качестве источников углерода используют различные углеродсодержащие соединения - гексозы, многоатомные спирты, аминокислоты, органические кислоты и углеводороды, [c.445]

    Промежуточный метаболизм складывается из двух фаз-катаболизма и анаболизма. Катаболизм-это фаза, в которой происходит расщепление сложных органических молекул до более простых конечных продуктов. Углеводы, жиры и белки, поступившие извне с пищей или присутствующие в самой клетке в качестве запасных веществ, распадаются в серии последовательных реакций до таких соединений, как молочная кислота, СО 2 и аммиак. Катаболические процессы сопровождаются высвобождением свободной энергии, заключенной в сложной структуре больших органических молекул. На определенных этапах соответствующих катаболических путей значительная часть свободной энергии запасается благодаря сопряженным ферментативным реакциям в форме высокоэнергетического соединения - аденозинтрифосфата (АТР). Часть ее запасается также в богатых энергией водородных атомах кофермента никотинамид адениндинуклеотидфосфата, находящегося в [c.379]

    До сих пор речь щла у нас главным бразом о центральных метаболических путях, т.е. о путях превращения основных пищевых веществ клетки-углеводов, жиров и белков. На этих центральных путях потоки -мeтaJбoлитoв довольно внущи-тельны. Например, в организме взрослого человека ежесуточно окисляется до СО2 и воды несколько сотен граммов глюкозы. Есть, однако, и другие метаболические пути со значительно меньшим потоком метаболитов ежесуточный синтез или распад измеряется здесь миллиграммами. Эти пути составляют так называемый вторичный метаболизм, роль которого состоит в образовании различных специализированных веществ, требующихся клеткам в малых количествах. К вторичным метаболическим путям принадлежит, например, биосинтез коферментов и гормонов, потому что эти соединения вырабатываются и используются только в следовых количествах. Сотни различных высокоспециализированных биомолекул, в том числе нуклеотиды, пигменты, токсины, антибиотики и алкалоиды, продуцируются у разных форм жизни на вторичных метаболических путях. Все эти продукты, разумеется, очень важны для тех организмов, которые их вырабатывают, и все они выполняют какие-то определенные биологические функции. Однако специализированные вторичные метаболические пути, ведупще к их синтезу, не во всех случаях хорошо изучены. В этой книге мы лишены возможности рассматривать эти вторичные метаболические пути, порой весьма сложные мы здесь займемся главным образом центральными, или первичными, путями метаболизма. [c.391]

    Большая часть потребленной свободной D-глюкозы в печени фосфорилируется при помощи АТР с образованием глюкозо-б-фосфата. Поглощенные в тонком кишечнике D-фруктоза, D-галактоза и D-манноза также превращаются в D-глюкозо-б-фосфат в результате ферментативного процесса, рассмотренного ранее (разд. 15.9). D-глюкозо-б-фосфат лежит, таким образом, на перекрестке всех путей превращения углеводов в печени. Метаболизм этого соединения в печени может осуществляться по пяти основным направлениям, и выбор какого-нибудь одного из них зависит от ежечасно и даже ежеминутно меняющихся спроса и предложения (рис. 24-9). [c.752]

    Некоторые а-оксикислоты образуются в качестве промежуточных соединений в метаболизме углеводов (гл. 15), а сам углеводы являются производными а-оксиальдегидов и ю-окси-кетонов (гл. 11). Одно из характерных свойств а-оксиальдегидов и а-о ксикетонов — их способность к изомеризации, особенно при действии оснований (рис. 9.28). Простая енолизациж кето-таутомера приводит к ендиолу, который может вновь тау-томеризоваться с образованием обоих изомерных карбонильных соединений. [c.223]

    Цикл начинается с того, что под действием АТФ, образовавшегося в фотохимических реакциях, рибулозо-5-фосфат превращается в дифосфат. Последний соединяется с диоксидом углерода с образованием неустойчивого шестиуглеродного соединения, которое дает две молекулы глицериновой кислоты-З-фос-фата. Для ее восстановления в глицеральдегид-З-фосфат и изомерный ему диоксиацетонфосфат необходимы тйкже АТФ и НАДФН. Два последних триуглеродных соединения превращаются во фруктозо-6-фосфат, который далее претерпевает обычный метаболизм углеводов (гл. 15). Кроме этого, углеводы могут запасаться в виде сахарозы или крахмала. [c.290]

    Организм может использовать энергию образовавшейся молекулы АТФ для восстановления окисленной молекулы, например фосфоглицериновой кислоты до молекулы, находящейся на уровне окисления углевода, например фосфоглицеральдегида. Обе эти молекулы — промежуточные соединения, образующиеся по ходу метаболизма при анаэробном окислении глюкозы в пировиноградную кислоту. Восстановителем служит восстановленный никотинамид, который также, как мы видели ранее, участвует в схеме анаэробного окисления глюкозы. [c.38]

    Общепризнанным является мнение, что образование структурных единиц обязано деятельности мхшроорганизмов. Так, фенольные Соединения могут являться продуктами paзлoнieния лигнинов и дубильных веществ, либо продуктами метаболизма микроорганизмов, использующих целлюлозу и другие углеводы. Другая категория структурных единиц — аминокислоты и пептиды — есть цродукты распада белков, но преимущественно продукты ресинтеза в форме микробной плазмы (см. схему). [c.304]

    АЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ (алифатические соединения, соединения жирного ряда) — органические соединения, л которых атомы углерода соединены между собой в нрям1.1е или разветвленные цепи., Ациклические уг.певод(5роды в большом количестве содержатся в природном газе и нефти. А. с. играют очень важную роль в биологич. процессах к А. с., в частпости, относятся жиры и продукты их метаболизма, а также многие аминокислоты, входяш ие в состав белков, углеводы (сахара, крахмал, клетчатка) и др. В эфирных маслах многих растений содержатся сложные эфиры, альдегиды, спирты и др. соединения ншрного ряда. В природе обнаружены все основные классы А. с. [c.180]

    Цикл лимонной кислоты (синоним цикл трикарбоновых кислот), часто связываемый с именем Кребса это, образно говоря, та главная ось, вокруг которой вертится метаболизм почти всех суш еству1ощих клеток. Естественно поэтому, что он займет центральное место и в нашем обсуждении. Значение этого цикла, первоначально постулированного для объяснения полного сгорания пирувата (и, таким образом, углеводов), а также дву- и трехуглеродных конечных продуктов окисления жирных кислот, вышло далеко за рамки этих и им подобных чисто катаболических функций, связанных с выработкой энергии. Цикл Кребса является фокусом , в котором сходятся все метаболические пути (см. гл. XI). Поэтому его реакции и субстраты играют решаюш,ую роль в биосинтезе (анаболизме) множества важных соединений, начиная от аминокислот, пуринов и пиримидинов и кончая жирными кислотами с длинной цепью и порфиринами. [c.348]

    Мы остановились на рассмотрении обмена веществ пурпурных бактерий в. темноте потому, что параллелизм дыхания и фотосинтеза дает дополнительный аргумент в пользу частичной прямой ассимиляции восстановителя. Если подобная ассимиляция обнаруживается в темновом метаболизме, она, вероятно, происходит и на свету. Таким образом, в дополнение к прямой ассимиляции перевосстановленных промежуточных соединений, которое предлагается для объяснения отклонений от уравнений (5.12) и (5.13), можно считать, что часть углеводов, образуемых нри фотоассиыиляции жирных кислот, может получиться за счет непосредственной гетеротрофной ассимиляции, а не фотосинтеза. Ван Ниль [46] рассматривает в случае ассимиляции ацетона три возможные реакции (5.16), (5.17) и (5.18), к которым для полноты можно добавить еще две реакции (5.18) и (5.19)  [c.116]

    У. к. играют важную роль в обмене углеводов, являясь коферментами многих важнейших реакций в метаболизме этого класса соединений, в частности в изомеризации галактозы в глюкозу (см. Изомеразы) и в окислении глюкозы до глюкуроновой к-ты, а также в биосрштезе ди-, олиго- и полисахаридов, где У. к. являются донорами гликозильных остатков. Так, наир., биосинтез лактозы в организме осуществляется путем ферментативного переноса остатка галактозы от УДФ-галактозы на глюкозо-1-фосфат. Аналогичную роль УДФ-сахара играют в биосинтезе сахарозы, [c.181]

    Рассмотрение обмена аминокислот по биогенетическим семействам [7] показало, что наибольший удельный вес во все изучавшиеся периоды роста и развития яровой вики принадлежит аминокислотам группы аспартата (лизин, метионин, треонин, изолейцин, аспарагиновая и аспарагин), связанным с обменом ок-салоацетата, и глутамата (аргинин, пролин, глутаминовая, глутамин и у-аминомасляная), сопряженным в обмене с а-кетоглута-ратом, т. е. аминокислотам, связанным с циклом ди- и трикар-боновых кислот (см. табл. 3). Содержание этих групп от 28-го до 67-го дней после посева снижается более чем в 3,5—4 раза, что связано с изменением удельного веса азотистых соединений в метаболизме растений по мере роста и развития за счет интенсификации обмена и возрастания удельного веса углеводов [8]. На долю семейств нирувата (аланин, валин, лейцин) и серина (серии, цистеин, цистин, глицин) приходится менее 1/3 общего количества свободных аминокислот. Содержание их в процессе вегетации растений также убывает. [c.91]

    Два процесса, иллюстрирующие некоторые общие принципы метаболизма углеводов, изображены на рис. 40.13 и 40.14. Первый процесс — это гликолиз, или анаэробный метаболизм второй процесс имеет несколько названий цикл лимонной кислоты, цикл трикарбоновых кислот или цикл Кребса (по имени Ганса Кребса, чьи блестящие эксперименты позволили установить существование этого цикла). На рисунках показаны только углеводы, так как белки и жиры вносят свой вклад в общую энео-гетическую копилку , после того как они переводятся в одно из промежуточных соединений углеводного цикла. [c.394]

    Одним ИЗ интересных белковрлх соединений является инсулин, гормон под келудочной железы, содействующий метаболизму углеводов в организме. Определено, что молекулярный вео 1шиулп,1а выражается величиной 35 100 3,3% [107, 108], и молекула инсулина, согласно теории Бергмана, построена из 288 аминокислотных единиц. В настоящее время 260 этих единиц идентифицированы, как показано в таблице 42, [c.422]

    Как и в ряду органических соединений фосфора, среди эфиров карбаминовых кислот имеются вещества с самым различным ареалом действия на вредных насекомых и с самой разной токсичностью для позвоночных. Как уже отмечалось выше, положительным качеством этих соединений является сравнительно быстрый метаболизм в растениях, животных и насекомых, что исключает возможность их накопления в организме человека и во внешней среде. Однако характер метаболизма отдельных соединений сильно зависит от строения эфирного радикала, так как некоторые фенолы, образующиеся в результате гидролиза инсектицидных эфиров метилкарбаминовой кислоты, разрушаются довольно медленно и могут давать соединения с углеводами и органическими природными кислотами [197]. [c.55]


Смотреть страницы где упоминается термин Углеводы, метаболизм соединениями: [c.86]    [c.239]    [c.85]    [c.521]    [c.405]    [c.135]    [c.220]    [c.114]    [c.710]    [c.510]    [c.574]    [c.394]    [c.378]    [c.255]    [c.235]    [c.45]   
Регуляция цветения высших растений (1988) -- [ c.7 , c.8 , c.9 , c.10 , c.33 , c.100 , c.214 , c.451 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2025 chem21.info Реклама на сайте