Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитоплазма строение

    Вторая основная категория живых существ — это эукариоты, т. е. организмы, клетки которых содержат истинное ядро. Клетки эукариот крупнее и сложнее по строению, чем клетки прокариот. В ядре, окруженном мембраной, заключена большая часть ДНК, которая таким образом отделена от цитоплазмы. В цитоплазме содержатся различные органеллы, каждая из которых обладает характерной структурой, — митохондрии, лизосомы, центриоли. Клетки эукариот так разнообразны ло размерам и форме и настолько специализированы, что описать типичную клетку практически невозможно. Все же на рис. 1-3 мы попытались изобразить некую усредненную клетку, отчасти животную, отчасти растительную. [c.26]


    Образование комплексов фермент—субстрат и гормон—рецептор предполагает узнавание молекулами друг друга. На более высоком уровне организации такой способностью обладают клетки. Так, лейкоциты в токе крови узнают и разрушают чужеродные клетки, например бактериальные, но не нападают на собственные клетки крови. Узнавание проявляется и в контактном ингибировании некоторые клетки высших организмов (например, клетки мышечной ткани) в питательной среде продолжают делиться до тех пор, пока не придут в контакт с другими клетками, после чего их рост прекращается. Раковые клетки в тех же условиях продолжают делиться. В этих двух примерах клеточного узнавания, имею- щего важное значение в медицине, участвуют поверхностные антигены. Уникальность специфических типов клеток указывает на большое разнообразие их поверхностных антигенов, что дополнительно усложняет строение биологических мембран. Процессы клеточного узнавания зависят от подвижности компонентов мембраны, которая, по-видимому, регулируется с помощью микротрубочек, имеющихся в цитоплазме [4]. [c.108]

    В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной. В цитоплазме находятся функционально специализированные структуры, но они не изолированы от цитоплазмы с помощью мембран и, следовательно, не образуют замкнутых полостей. Эти структуры могут быть сформированы и мембранами, но последние не замкнуты и, как правило, обнаруживают тесную связь с ЦПМ, являясь результатом ее локального внутриклеточного разрастания. В клетках прокариот есть также образования, окруженные особой мембраной, имеющей иное по сравнению с элементарной строение и химический состав. [c.18]

    Клетка прокариот обладает рядом принципиальных особенностей, касающихся как ее ультраструктурной, так и химической организации (рис. 4). Структуры, расположенные снаружи от ЦПМ (клеточная стенка, капсула, слизистый чехол, жгутики, ворсинки), называют обычно поверхностными структурами. Термином клеточная оболочка часто обозначают все слои, располагающиеся с внешней стороны от ЦПМ (клеточная стенка, капсула, слизистый чехол). ЦПМ вместе с цитоплазмой называется протопластом. Рассмотрим сначала строение, химический состав и функции поверхностных клеточных структур. [c.27]

    Строение генетического аппарата прокариот долгое время было предметом жарких дискуссий, суть которых сводилась к тому, есть у них такое же ядро, как у эукариот, или нет. Установлено, что генетический материал прокариотных организмов, как и эукариотных, представлен ДНК, но имеются существенные различия в его структурной организации. У прокариот ДНК представляет собой более или менее компактное образование, занимающее определенную область в цитоплазме и не отделенное от нее мембраной, как это имеет место у эукариот. Чтобы подчеркнуть структурные различия в генетическом аппарате прокариотных и эукариотных клеток, предложено у первых его называть ну кл е-о и д о м в отличие от ядра у вторых. [c.55]


    Эукариотические клетки содержат ядро, цитоплазму, внутриклеточные органеллы, а также цитоскелет. По размеру они во много раз превышают клетки прокариот. В частности, диаметр средней эукариотической клетки превышает таковой у прокариот в 10—15 раз. Еще в большей степени отличается объем клеток. У эукариот он может быть на три-четыре порядка больше, чем у прокариот. Отличительной особенностью эукариотических клеток является также наличие различных по строению и выполняемым функциям внутриклеточных органелл (рис. 1.4). [c.12]

    Все клетки, даже самые простые, имеют мембраны. Мембраны отделяют внутреннее содержимое клетки от окружающей среды, поэтому нарушение целостности мембраны приводит к гибели клетки. Мембраны не только сохраняют молекулы веществ, входящих в ее состав, но и реализуют специфику химического состава клеточной цитоплазмы. С помощью специальных устройств мембрана избирательно выбрасывает из клетки ненужные вещества и поглощает из окружающей среды необходимые. Главные компоненты биологических мембран живых организмов — это сложные липиды. Следует обратить внимание на то, что все сложные липиды, описанные в разд. 9, имеют характерное строение для поверхностно-активных веществ, т. е. две большие неполярные углеводородные группы и полярную часть, способную к образованию водородных связей. Таким образом, эти молекулы способны самопроизвольно агрегировать, образуя в воде бислойные структуры, составляющие основу мембраны. В состав мембранного бислоя входят и молекулы белков, и свободные жирные кислоты. Последние встраиваются в бислой так, что их жирные хвосты погружены внутрь, а полярные группы во внешнюю среду и контактируют с ионами натрия с внешней, а с ионами калия с внутренней стороны бислоя (см. рис. 73). Биологические мембраны не только регулируют обмен веществ в клетке, но и воспринимают химическую информацию из внешней среды с помощью специальных рецепторов. Биологические мембраны обеспечивают иммунитет клетки, нейтрализуя чужие и свои вредные вещества. Они также способны передавать информацию соседним клеткам о своем состоянии. Наконец, совсем недавно было обнаружено, что многие белки-ферменты могут работать только внутри мембраны, запрещая, разрешая или сопрягая ферментативные процессы. [c.407]

    Строение бактериальной клетки имеет ряд отличий от строения клеток растительных организмов. Основное отличие заключается в особом строении ядерного аппарата бактерий. Ядерный аппарат не окружен мембраной, отделяющей его от цитоплазмы, он содержит не связанную с белками — гистонами дезоксирибонуклеиновую кислоту, нити которой имеют толщину [c.114]

    А), служит не тимин, а урацил (У). Возникшая на ДНК моле-кула информационной РНК отделяется от своей матрицы, уходит из клеточного ядра в цитоплазму и сама становится матрицей для синтеза определенного белка. Следовательно, информационная РНК служит лишь посредником, передающим из ядра в цитоплазму информацию о строении синтезируемого белка, В молекулах ДНК клеточного ядра содержится вся программа синтеза белков, возникающих в процессе метаболизма в данной клетке. [c.126]

    Основу строения тела простейших, так же как и у бактерий, составляют цитоплазма и ядро. У большинства представителей этого типа в клетке обнаруживается одно ядро, но некоторые имеют несколько ядер. В отличие от бактерий простейшие имеют обособленное ядро, окруженное ядерной оболочкой. [c.36]

    Различные клетки многоклеточных организмов отличаются друг от друга, однако каждая растительная клетка имеет общие черты строения и в каждой находятся общие внутриклеточные структуры, выполняющие аналогичные функции. Каждая растительная клетка состоит из цитоплазмы и ядра. Цитоплазма окружена клеточной оболочкой, а ядро — ядерной оболочкой. Цитоплазма — это очень сложная коллоидная система. Дисперсной средой ее служит вода, в которой растворены минеральные соли, сахара, аминокислоты, органические кислоты и многие другие вещества. Во взвешенном состоянии в цитоплазме находятся различные включения и большое число органелл, или структур, разного состава и размера. В последнее время с помощью дифференциального центрифугирования, электронной микроскопии, и других методов исследования удалось установить огромную роль этих структур в обмене веществ и энергии в живых организмах. [c.27]

    Двигательные органеллы. У всех эукариотических клеток, имеющих жгутики или реснички (у простейших, водорослей, сперматозоидов и клеток мерцательного эпителия), строение их одинаково. На поперечном срезе видно, что на периферии жгутика располагаются девять двойных нитей, а в центре-две одиночные нити (структура 9 + 2 ). Снаружи вся эта система одета плазматической мембраной. Основание жгутика закреплено в наружном слое цитоплазмы при помощи базального тельца, или блефаропласта. Блефаропласт представляет собой производное самовоспроизводящейся органеллы (центриоли). [c.27]


    На дальнейшее развитие биохимии РНК большое влияние оказали успехи цитологии. В связи с этим обсуждению роли РНК в жизни клетки необходимо предпослать краткий очерк некоторых современных представлений о строении цитоплазмы. [c.125]

    Строение и свойства РНК. Рибонуклеиновая кислота содержится как в ядре (главным образом в ядрышке), так и в цитоплазме клетки. Основная масса РНК находится в цитоплазме, на долю цитоплазматической РНК приходится около 90% всей клеточной РНК. Все органы, синтезирующие большое количество белка, богаты РНК, сосредоточенной в цитоплазме и ядрышке. Между количеством РНК и интенсивностью белкового синтеза имеется прямая зависимость. [c.60]

    Из компонентов клетки было выделено три типа рибонуклеиновых кислот. Все они обладают общим химическим строением и отличаются по составу, нуклеотидной последовательности и молекулярному весу. До настоящего времени мало что известно о конформации этих молекул. Белки синтезируются на рибонуклеопротеид-ных частицах цитоплазмы (безъядерная часть протоплазмы), РНК этих частиц называется рибосомальной РНК iB отличие от тра н1опорт,ной РНК, лереносящей аминокислоты. Дохи (1961) цредположил наличие и -формационной РНК, в которой закодирована (Последовательность ам иио-.кислот белка, синтезирующегося под действием рибосомальной РНК. [c.735]

    Строение клетки микрогрибов принципиально не отличается от строения клетки бактерий. Они имеют одно или несколько диф ференцированных ядер, а в цитоплазме их клеток может образо вываться несколько вакуолей, заполненных клеточной жидкостью [c.12]

    Инфицирование клетки Е. соИ бактериофагом происходит следующим путем фаг впрыскивает свою ДНК через клеточную стенку в цитоплазму. Приблизительно через 20 мин после этого клетка лопается, и из нее выходит около 100 полностью готовых копий исходной вирусной частицы. Такая высокая скорость размножения позволяет проводить в пробирке в течение 20 мин генетические эксперименты, для которых потребовалось бы все население земного шара, если бы эти опыты проводились на людях. Главные принципы, лежащие в основе этого метода, были ясно изложены Бензером [130], который впервые составил карту тонкого строения гена. Частицы бактериофагов, подобно бактериям, можно посеять в чашке с агаром. Отличие заключается лишь в том, что агар должен содержать однородную суспензию бактерий, чувствительных к вирусу. В какой бы участок чашки ни попали вирусные частицы, они заражают какую-либо бактерию. Вокоре инфекция распространяется на соседние бактерии и в результате образуется стерильное пятно (рис. 15-20). Число основных вирусных частиц, содержащихся в суспензии, можно легко определить, сосчитав число стерильных пятен, образовавшихся в результате посева. [c.248]

    У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) также широко распространены М г.э., к-рые аналогичны М.г.э. прокариот по общему плану строения, способу транспозиции и генетич. эффекту. Элементы, подобньге 18 и гранспозонам, найдены у мн. эукариот (грибы, растения, млекопитающие и др.). Разл. эписомоподобные факторы обнаружены в ядре и цитоплазме дрожжей Умеренным фагам бактерий соответствуют онкогенные вирусы, в частности РНК-содержащие вирусы (ретровирусы) позвоночных. [c.80]

    Всякий биохимик должен быть не только химиком, но и биологом, по крайней мере настолько, чтобы иметь представление о разделах биологии, касающихся изучаемых им живых организмов. Например, исследование биохимических законов генетики и наследственности требует хорошего знакомства со строением клеточного ядра и цитоплазмы, протоплазмы клетки и хромосомного состава генов клеточного ядра. В некоторых случаях биохимику интересно исследовать протекание реакций непосредственно в организме (in vivo или in situ), а в других — выделить их из живого окружения и проследить за ними в изолированной системе (in vitro). Вследствие большой сложности даже наиболее распространенных биохимических процессов, как, скажем, метаболизм углеводов, ученым приходится проявлять большую изобретательность при разработке методов изолирования биохимических процессов и их изучения. Поэтому мы начнем с краткого обзора методов, применяемых в биохимии, а затем ознакомимся с основными областями исследований этой многогранной науки. [c.477]

    В препаративной энзимологии чаще пользуются методом дифференциального центрифугирования гомогенатов тканей (рис. 4.26). Для этого сначала разрушают клеточную структуру с помощью подходящего дезинтегратора и полученную квазиоднородную (гомогенизированную) массу подвергают дифференциальному центрифугированию при температуре О—4°С. Обычно распределение ферментов изучают в последовательных индивидуальных фракциях, изолированных при дробном центрифугировании гомогенатов, в частности во фракции ядер, которую получают при низкой скорости центрифугирования, во фракции митохондрий, которая осаждается при средней скорости центрифугирования, во фракции микросом (или рибосом), для изолирования которой требуется высокая скорость центрифугирования, и, наконец, в оставшейся прозрачной надосадочной жидкости (супернатант), представляющей собой растворимую фракцию цитоплазмы. Следует отметить, что фракция митохондрий не является гомогенной, поскольку из нее удается изолировать частицы, известные как лизосомы, размер которьгх занимает промежуточное место между размерами митохондрий и микросом. В свою очередь микросомальная фракция также является гетерогенной, поскольку состоит в основном из элементов эндоплазматической сети неоднородного строения. [c.158]

    Синапс можно представить себе как узкое пространство (щель), ограниченное с одной стороны пресинаптической, а с другой —постсинаптической мембраной (рис. 19.4). Пресинаптическая мембрана состоит из внутреннего слоя, принадлежащего цитоплазме нервного окончания, и наружного слоя, образованного нейроглией. Мембрана в некоторых местах утолщена и уплотнена, в других истончена и имеет отверстия для сообщения цитоплазмы аксона с синаптическим пространством. Постсинапти-ческая мембрана менее плотная, не имеет отверстий. Подобным образом построены и нервно-мышечные синапсы, но они имеют более сложное строение мембранного комплекса. [c.638]

    Обоснование того, что прокариотный и эукариотный типы клеточной организации являются наиболее существенной границей, разделяющей все клеточные формы жизни, связано с работами Р. Стейниера (К. 81ашег, 1916—1982) и К. ван Ниля, относящимися к 60-м гг. XX в. Поясним разницу между прокариотами и эукариотами. Клетка — это кусочек цитоплазмы, отграниченный мембраной. Последняя под электронным микроскопом имеет характерную ультраструктуру два электронно-плотных слоя каждый толщиной 2,5 —3,0 нм, разделенных электронно-прозрачным промежутком. Такие мембраны получили название элементарных. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды, углеводы. Цитоплазма и элементарная мембрана, окружающая ее, — непременные и обязательные структурные элементы клетки. Это то, что лежит в основе строения всех без исключения клеток. Изучение тонкой структуры выявило существенные различия в строении клеток прокариот (бактерий и цианобактерий) и эукариот (остальные макро- и микроорганизмы). [c.18]

    По тонкому строению клетки, выявляемому с помощью электронного микроскопа, архебактерии принципиально не отличаются от эубактерий и ближе к грамположительной их ветви. Прокариотная организация архебактерий проявляется в отсутствии у них ядра и характерных для эукариот органелл, окруженных мембраной. Хромосомная ДНК организована в виде нуклеоида, т.е. расположена непосредственно в цитоплазме и имеет вид электроннопрозрачной зоны, заполненной нитями ДНК. [c.408]

    Окраска железным гематоксилином по Гейденгайну применяется для выявления тонких деталей строения ядра и цитоплазмы простейших. [c.345]

    Строение мицелия. Гифы грибов могут быть одноклеточными, несептированными (большинство низших грибов) или многоклеточными, разделенными на клетки поперечными перегородками (септами), имеющими в центре пору, через которую цитоплазма соседних клеток сообщается (ценоцитоз). Многоклеточный (септированный) мицелий имеют все высшие грибы. Гифа представляет собой трубчатую нить, диаметр которой зависит от вида гриба и условий культивирования он колеблется от 3 до 10—12 мкм. [c.69]

    Строение нуклеиновых кислот. Участие их в синтезе клеточных белков. Синтез белков лежит в основе построения новых клеточных структур. Организмы синтезируют свои собственные гбелки, отличающиеся от белков других видов характером чередования аминокислот. Первичная структура белков определяет многие их биохимические особенности. Изменение чередования аминокислот в молекулах ферментов в некоторых случаях приводит к потере свойств катализатора. Чем же определяется последовательность расположения аминокислот при синтезе белков Для ответа на этот вопрос была выдвинута теория матриц. Согласно этой теории, в клетках имеется нечто подобное типографским матрицам или штампам, каждый из которых штампует белок определенного вида или точнее белок со строго определенным порядком расположения аминокислот в его полипептидной цепи. Роль матриц выполняют нуклеиновые кислоты. Нуклеиновые кислоты имеются во всех без исключения клетках. Различают две группы нуклеиновых кислот—дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК содержится главным образом в клеточном ядре, РНК — Э ядре и цитоплазме. [c.122]

    В отличие от протеидов других классов простетические группы нуклеопротеидов— нуклеиновые кислоты, или полинуклеотиды, — являются макромолекулярными соединениями. Они имеют сложное строение и дают в результате гидролиза фосфорную кислоту, пентозу и пиримидиновые и пуриновые основания. Строение нуклеиновых кислот будет описано ниже (см. Нуклеиновые кислоты ). В плазме клетки (цитоплазме) было обнаружено также очень большое число шарообразных частиц, называемых микросомами, с молекулярными весами порядка нескольких миллионов, также состоящих из нуклеиновых кислот (рибонуклеиновой кислоты) и белков, В этих микросомах происходит синтез белков. Нуклеиновые кислоты микросомов действуют как матрицы или клише (гены), служащие для синтеза специфичных белков и для своего собственного воспроизведения (Н. Е, Паладе, 1955 г,), В этом синтезе участвуют также и ферменты, связывающие аминокислоты с аденозиимонофосфорпой кислотой (М, Хогланд, 1956 г.). [c.455]

    По вопросу о ядерных структурах бактерий до сих пор нет единого мнения. Несомненным является наличие ядерного вещества, состоящего главным образом из дезоксирибонуклеиновой кислоты (ДНК). По мнению одних исследователей, ядерное вещество в клетках бактерий находится в диффузном (распыленном) состоянии. Другие ученые находили дифференцированное (обособленное) ядро. Электронная микроскопия позволила выявить у некоторых видов бактерий ядроподобные образования — нуклеоиды (от лат. пиЫеиз — ядро). Однако по сравнению с ядрами клеток высших организмов эти образования имеют более простое строение. Нуклеоиды не отделены от цитоплазмы оболочкой и поэтому не имеют постоянной формы. [c.30]

    Рис. 2-13. л. Т ельце Г ольджи в цитоплазме амебы. Мелкие сферические пузырьки отщепляются от краев более крупных уплощенных пузьфьков. Б. Рисунок, показывающий пространственное строение тельца Г ольджи. [c.39]

    Клеточные ядра, хлоропласты, митохондрии и микросо.мы— это очень сложные структурные образования. В различных клеточных структурах и в основном веществе цитоплазмы главнейшими структурными элементами, которые определяют характер их строения, являются мембраны. Они есть во всех клеточных структурах и определяют многие специфические свойства леточных структур. [c.28]

Рис. 2.1. Комбинированная схема строения эукариотической (растительной) клетки (по Зитте). Вак вакуоли Д-диктиосомы КСт-клеточная стенка Ли — липидные капельки Мыт-митохондрии Мтр-микротрубочки Я-поры с плазмодесмами ПМ-плазматическая мембрана СП-секреторные пузырьки (экзоцитоз) X/i-хлоропласты ДЯ г-цитоплазма Я-ядро. Рис. 2.1. <a href="/info/970018">Комбинированная схема</a> <a href="/info/1890489">строения эукариотической</a> (растительной) клетки (по Зитте). Вак вакуоли Д-диктиосомы КСт-<a href="/info/98958">клеточная стенка</a> Ли — липидные капельки Мыт-митохондрии Мтр-микротрубочки Я-поры с плазмодесмами ПМ-<a href="/info/101065">плазматическая мембрана</a> СП-секреторные пузырьки (экзоцитоз) X/i-хлоропласты ДЯ г-цитоплазма Я-ядро.
Рис. 2.45. Схема спорообразования и строения зрелой споры. А, Б-процесс отделения протопласта споры В, Г, Д образование предспоры Е-зрелая спора, /-цитоплазма 2-плазматическая мембрана 5-клеточная ст енка зародыша -кора споры 5-внутренняя оболочка споры 6-наружная оболочка споры 7-экзоспориум. ( У. О. МигеП.) Рис. 2.45. Схема спорообразования и строения зрелой споры. А, Б-<a href="/info/814573">процесс отделения</a> протопласта споры В, Г, Д образование предспоры Е-зрелая спора, /-цитоплазма 2-<a href="/info/101065">плазматическая мембрана</a> 5-клеточная ст <a href="/info/269632">енка</a> зародыша -кора споры 5-<a href="/info/930123">внутренняя оболочка</a> споры 6-<a href="/info/1567664">наружная оболочка</a> споры 7-<a href="/info/278405">экзоспориум</a>. ( У. О. МигеП.)
    В ряде опытов был изучен фосфоролиз, т. е. обращение реакции полимеризации [158, 166, 168]. Для этого используемый полинуклеотид инкубировали с ферментом в присутствии избытка неорганического фосфата, что приводило к образованию нуклеозиддифосфатов в результате последовательного отщепления моно-нуклеотидных единиц. Оказалось, что легко фосфоролизируются не только полимеры, полученные путем биосинтеза, но и обладающие затравочной активностью олигонуклеотиды. Динуклеотиды же и динуклеозидмонофосфаты, как и следовало ожидать, не поддаются фосфоролизу. РНК вируса табачной мозаики и высокополимерная РНК дрожжей могут легко подвергнуться фосфоролизу, но если дрон<жевую РНК предварительно обрабатывают щелочью, то фосфоролиз протекает медленно. Медленно протекает и фосфоролиз многочисленных тяжей, образованных, например, из поли-А и поли-У. Неполностью (па 20—30%) протекает фосфоролиз транспортной РНК клеточной цитоплазмы, что можно объяснить особенностями вторичного строения s-PHK. По-видимому, фосфоролиз затрагивает преимущественно концевые группы. [c.256]

    Ткани, из которых состоят масличные плоды и семена, слагаются из большого количества клеток. Различаясь по форме и величине, клетки имеют в строении много общего. Основная часть клетки, ее внутреннее содержание — протопласт (протоплазма). В протепласте различают цитоплазму и органоиды, вкрапленные в цитоплазму. Наиболее крупный из органоидов — ядро клетки, другие органоиды митохондрии, пластиды, система мембран — более мелкие. В зрелых семенах, когда рост клетки закончился, цитоплазма теряет прозрачность, уплотняется, ядро клетки смещается из центрального положения к стенке клетки, в клетке появляются полости, заполненные клеточным соком,— вакуоли. [c.18]


Смотреть страницы где упоминается термин Цитоплазма строение: [c.106]    [c.277]    [c.128]    [c.184]    [c.199]    [c.31]    [c.410]    [c.24]    [c.71]    [c.402]    [c.125]    [c.23]    [c.163]    [c.170]    [c.156]    [c.248]   
Физиология растений (1980) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Цитоплазма



© 2025 chem21.info Реклама на сайте