Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность кислород азот

    Пример 7. Найти объемный состав с хого воздуха. Плотность кислорода, азота и их смеси (воздуха) при н. у. соответственно равна 1,43, 1,25 и 1,29 г/л. [c.48]

    Пример 2. Вычислить плотность азотно-кислородной смеси, состоящей по объему из 21% О2 и 79°/о N2- Плотность кислорода 1,429 г/л, азота—1,251 г/л. [c.10]

    Пример 2, Подсчитать плотность р и приведенный молекулярный вес (М) воздуха, если состав его (по объему) 21% О2, 78% N2 и 1% Аг, а плотность кислорода 1,429 г/уг, азота 1,251 г/л и аргона 1,781 г/л. [c.53]


    Чистый ванадий — серебристый ковкий металл, плотностью 5,96 г/см , плавящийся прн температуре около 1900 °С. Как и у титана, механические свойства ванадия резко ухудшаются нри наличии в нем примесей кислорода, азота, водорода. [c.652]

    Кухаренко отмечает, что гумусовые кислоты представляют собой коричневые аморфные порошки, которые при нагревании разлагаются. Их плотность варьирует от 1330 до 1448 кг/м , причем закономерно увеличивается с повышением зрелости торфов и бурых углей. Гумусовые кислоты из торфа и бурых углей значительно различаются по элементному составу. Обычно с повышением зрелости содержание углерода увеличивается, а водорода, кислорода, азота и серы уменьшается [26]. [c.146]

    Чистый ванадий — голубовато-серый ковкий металл, плотностью 5,96 г/см , плавящийся при температуре около 1900 °С. Как и у титана, пластические свойства ванадия резко ухудшаются при наличии в нем примесей кислорода, азота, водорода. Эти примеси одновременно повышают твердость и хрупкость ванадия. [c.508]

    Присутствие благородных газов в воздухе было постулировано (а затем открыто) У. Рамзаем в 1894 г. при сравнении плотности атмосферного азота (т. е. воздуха, из которого удален кислород), равной 1,257 г/л, с плотностью химически чистого азота (полученного термическим разложением нитрита аммония). Плотность какого азота должна быть больше Рассчитайте плотность чистого азота и покажите, что не случайно открытие благородных газов называют торжеством третьего знака после запятой . [c.232]

    Физические методы. Состав воздуха может быть вычислен из плотностей чистого азота и чистого кислорода по отношению к воздуху. [c.516]

    Силы отталкивания способствуют обмену кинетической и потенциальной энергий между молекулами, установлению термодинамического равновесия. Межмолекулярные химические связи возникают в результате перераспределения электронной плотности в пространстве между молекулами, частичного переноса заряда от молекулы донора к молекуле акцептора. Такой перенос электронного заряда понижает энергию системы и приводит к образованию молекулярных ассоциатов в чистых жидкостях и комплексных соединений в растворах. Разновидностью межмолекулярных химических взаимодействий является водородная связь, осуществляемая с участием водорода. Атом водорода, ковалентно связанный с атомом фтора, кислорода, азота, хлора, серы, фосфора, углерода, может образовать вторую связь с одним из таких же атомов другой молекулы. В воде, спиртах и кислотах энергия водородной связи составляет 20,9 —33,4 кДж/моль в бензоле, растворе ацетон — вода — около 4,2 кДж/моль. [c.247]


    Определите плотность водорода, азота и кислорода на основании закона Авогадро при нормальных условиях Т = 273 К Р = Па. [c.19]

    Введение атомов галогенов, кислорода, азота и других элементов в состав молекул органического веш,ества прежде всего вызывает перераспределение электронной плотности за счет образования полярных связей между атомами углерода и введенным атомом. Перераспределение электронной плотности между двумя атомами, входящими в состав молекулы, не может быть локализованным и влияет на распределение электронов во всей молекуле, изменяя ее свойства. [c.448]

    Ванадий представляет собой серебристо-серый металл, плотность 5,96 г/см , плавится прн температуре 1920°С. Ванадий пластичен, однако его пластичность ухудшается прп наличии в металле примесей неметаллов (кислорода, азота). [c.265]

    Через 1 дм" пленки полиэтилена плотностью 0,96, толщиной 0,025 лш при 20—25° нри 1 см рт. ст. перепада давления кислорода, азота и углекислоты за 24 часа проходит соответственно 10,6, 2,7 и 35 мл газа. [c.767]

    Физическое теплосодержание нефтяного сырья можно най-ТИ( из зависимостей, связывающих его с плотностью и характеризующим фактором [7]. Общая теплота различных продуктов сгорания, а также значения ее для кислорода, азота и водяного пара, содержащихся в сырьевых потоках, были опубликованы ранее [8] вместе с материальными и энергетическими балансами реакторов синтез-газа, работающих на газообразных топливах. [c.187]

    Сходный со смолами состав имеют асфальтены - наиболее высокомолекулярные соединения нефти. В состав асфальтенов входят углерод, водород, кислород, азот, сера, но соотношения между количеством этих атомов иное, чем в смолах. Больше в асфальтенах содержится и таких элементов, как железо, ванадий, никель и др. В специальной литературе указывается, что асфальтены представляют собой продукт конденсации молекул смол. У асфальтенов молекулярная масса выше 1 ООО. Асфальтены представляют собой черное твердое вещество с плотностью более 1. [c.3]

    При повышении полярности среды это равновесие смещается влево к состоянию с большей спиновой плотностью на азоте, что приводит к росту и снижению. Изменение АЕ происходит при сольватации молекулами растворителя по л либо -орбиталям радикала. Наблюдаемое увеличение АЕ т, с ростом гидрофобности растворителя может быть связана с усилением сольватации -орбитали кислорода. [c.188]

    Электронодонорные заместители проявляют +М-эффект и повышают электронную плотность в сопряженной системе. К электронодо-норным заместителям относятся гидроксильная группа —ОН и аминогруппа — НН,. Неподеленная пара электронов гетероатомов этих групп вступает в общее сопряжение с тг-электронной системой бензольного кольца и увеличивает длину сопряженной системы. Такой вид сопряжения называется р,л-сопряжением атомы кислорода, азота, серы, неподеленные пары электронов которых участвуют в р,л-сопряжении, не образуют кратных связей (по этому признаку их можно узнать в формулах веществ). Под влиянием электронодонорных заместителей происходит перераспределение электронной плотности в бензольном кольце с некоторым ее сосредоточением в орто- и /юря-положениях. [c.126]

    В свободном виде — твердые, не-плавящиеся, хрупкие вешества черного или бурого цвета. В отличие от нейтральных смол А. не растворимы в петролейном эфире, легко растворимы в бензоле и его гомологах, хлороформе, сероуглероде и т. д. Плотность А. более, единицы. Кроме углерода и водорода, содержат также нек-рое количество кислорода, азота и серы. [c.64]

    В составе нефтей выделяют парафиновые, нафтеновые и ароматические углеводороды, а также углеводороды смешанного строения. Кроме того, в составе нефтей имеются гетероатомные углеводородные соединения, содержащие серу, кислород, азот. Каждая из этих групп соединений состоит из большого числа индивидуальных веществ. Многие нефти содержат значительное количество легких жидких углеводородов, относящихся к бензиновой и газой-левой фракциям. Такие нефти имеют наименьшую плотность (0,70—0,80 г/см ). Если плотность нефтей более значительна, в их составе доминируют керосиновые и масляные фракции. Наконец, встречаются тяжелые нефти, плотность которых достигает 0,95—1,0. В этих нефтях содержится много смолистых веществ. [c.5]

    Такое утверждение представляется нам недостаточно обоснованным. В самом деле, в возбужденном состоянии на кислороде гидроксильной группы происходит значительное понижение электронной плотности. Одновременно, как показано Веллером 165], повышается электронная плотность на азоте азометиновой группы. Усиление при этом диполь-дипольного взаимодействия должно привести не к разрыву, а, наоборот, к упрочнению внутримолекулярной водород-/ ной связи. Можно предположить, что в молекуле, поглотившей квант света, в соответствии с новым распределением электронной плотности происходит перемещение протона вдоль координаты внутримолекулярной водородной связи. Но это не полное смещение протона к, азоту азометиновой группы, а лишь частичный сдвиг, способствующий образованию наиболее прочной водородной связи. Чем прочнее водородная связь в основном состоянии, тем меньше энергетические затраты на перенос протона в возбужденном состоянии, тем меньше стоксов сдвиг и выше интенсивность флуоресценции. После излучения кванта флуоресценции в молекуле вновь происходит перераспределение электронной плотности и сдвиг протона в обратном направлении. [c.71]


    Открытие в составе воздуха первого из инертных газов — аргона, вошедшее в историю химии под образным названием торжество третьего десятичного знака , состоялось лишь примерно сто лет спустя при следующих обстоятельствах. В конце XIX, в. предметом ожесточенных споров сделалась гипотеза Проута, Согласно этой гипотезе, атомы всех элементов представляют собой сочетания атомов водорода, так как по крайней мере большинство атомных весов элементов оказываются кратными от единицы. Для решения споров потребовалось повторное определение атомных весов, в частности через точное измерение удельных весов таких газов, как азот, кислород и водород. Зтой задачей и был занят английский экспериментатор Релей, когда он натолкнулся на непонятный факт азог, выделенный из воздуха путем уда-, ления из него кислорода (и СОг), имел одну плотность, а азот, выделенный из азотистых соединений, — другую, несколько меньшую (1,257 и 1251 г/л). [c.176]

    Пример 2. Вычислить плотность азотно-кислородной смеси, состоящей по объему из 21°/о О2 9% N3. Плотность кислорода 1,429 г/л, азота 1,251 г л. [c.21]

    Для отделения азота от кислорода нельзя воспользоваться различием в плотностях обоих газов, потому что они очень близки плотность кислорода в 16, азота в 14 раз более плотности водорода, а потому здесь нельзя употребить пористых сосудов разность во времени просачивания для обоих газов будет ничтожною. [c.438]

    Пары и газы, как объяснено в главе 2, повинуются одним законам, притом лишь приближенным. Для вывода объемных законов, очевидно, должно брать во внимание только возможно совершенное состояние (удаленное от жидкого) и химическую неизменность, при которых плотность пара постоянна, т.-е. такое, при котором объем данного газа или пара изменяется, как объем водорода, воздуха или другого газа при перемене давления и температуры (тут, конечно, есть своя условность, но она неизбежна почти всюду, ибо абсолютно — недостижима). Оговорку эту необходимо сделать для того, чтобы ясно видеть, что законы газовых объемов, далее излагаемые, находятся в теснейшей связи с законами перемены объемов от давления и температуры. А как эти последние законы (гл. 2) ие строго, а только приближенно точны, то это же относится и к далее излагаемым законам. И как есть возможность найти дальнейшие, более точные (второе приближение) законы для изменения V от р к i (чему примером и служит формула. Ван-дер-Ваальса), так точно возможно и более точное выражение для соотношения между составом и плотностью паров и газов. Но чтобы в самом начале не родилось сомнения в широте и общности объемных законов, достаточно сказать, что плотность таких газов, как кислород, азот, углекислота и пр., и таких паров, как ртути или воды — по опыту — остается постоянною (в пределах точности опытов) в широких пределах температур от обыкновенной до белокалильного жара. При перемене же давлений, судя по тому, что дано в моём сочинении, 06 упругости газов (т. I, стр. 9), можно думать, что плотность сохраняется с большим постоянством даже тогда, когда отступления от закона Мариотта весьма велики. Однако, в этом последнем отношении число данных еще мало для окончательного суждения. [c.530]

    Г фиий, а также искусственно полученный элемент курчатовин (№ 104). Конфигурация электронной оболочки атомов этих элементов такая же, как у титана, — d s . Аналоги титана цирконий и гафний являются тяжелыми металлами — их плотности соответственно 6,45 и 13,31 г/см температуры их плавления также выше, чем у титана 1852 и 2225°С. Цирконий и гафний образуют разнообразные соединения, в устойчивых и наиболее характерных из которых цирконий и гафний четырехвалентны. Устойчивость соединений, в которых эти элементы трех- и двухвалентны, невелика п убывает в направлении Ti—Zr — Hf. В этом же направлении возрастает металлическая активность этих элементов. Цирконий и гафний, подобно титану, существуют в двух полиморфных видо-измеР ениях — а и р. Также подобно титану цирконий и гафпин при обычных температурах химически неактивны и коррозионноустойчивы, а при высокой температуре реагируют с кислородом, азотом н другими элементарными окислителями. [c.275]

    Молекулы спиртов ассоциированы за счет возникновения между ними водородных связей. Водородная связь возникает там, где есть водород и сильно электроотрицательный элемент — ( ггор, кислород, азот, хлор, сера. Так как электронная плотность от водорода смещена, то водород может взаимодейсгвовать с неподеленной электронной парой другого атома или иона. Эта связь более слабая, возникающая за счет электростатического и донорно-акцепторного взаимодействий. Для водородной связи характерны направленность в пространстве и насыщенность. [c.222]

    Вследствие электростатического происхождения водородной связи ее образуют лишь атомы наиболее электроотрицательных элементов — фтора, кислорода, азота. Обычно неподеленная электронная пара притягиваемого атома наиболее тесно сближается с притягивающим ионом водорода. Вода особенно подходящее вещество для образования водородной связи, поскольку каждая молекула имеет два атома водорода и две неподеленные электронные пары, а следовательно, может образовать четыре водородные связи. Тетраэдрическое расположение поделец-ных и неподеленных электронных пар обусловливает тетраэдрическое направление этих четырех связей в пространстве и приводит к образованию характерной кристаллической структуры льда (рис. 9.8). Эта структура, в которой каждая молекула окружена только четырьмя ближайшими соседними частицами, весьма ажурна, и поэтому лед является веществом с аномально низкой плотностью. При плавлении льда тетраэдрическая структура частично разрушается и молекулы воды сближаются, вот почему плотность воды превышает плотность льда. Однако многие водородные связи сохраняются, и агрегаты молекул с тетраэдрической структурой присутствуют в воде при температуре за- [c.252]

    Э. используют в полупром. масштабах для глубокой очистки металлов (Ga, In, РЗЭ) в жидкой фазе. Для РЗЭ Э. в твердом состоянии - осн. метод очистки, т. к. РЗЭ реагируют со всеми газами, кроме благородных, и здесь недоступны традиц. методы очистки, особенно от примесей кислорода, азота и углерода. Э. применяют для выращивания монокристаллов и эпитаксиальных слоев полупроводниковых соед., напр. GaAs (элжтроэпитаксия). Э. в тв дой фазе - одна из причин отказов полупроводниковых приборов и электронных устройств, работающих при высоких плотностях тока. Изучение закономерностей Э. позволяет сильно увеличить срок службы этих приборов. В области Э. можно ожидать новых открытий, особенно в случаях Э. на фанице твердых и жидких фаз, при фазовых переходах. Об этом свидетельствует факт аномально высокой подвижности примесей при зонной плавке и резании металлов (эффект Бобровского). [c.453]

    Нитрилы образуют молекулярные соединения и с нуклеофильными реагентами, например с фенолом и, по-видимому, с пиридином . Ацетонитрил дает молекулярное соединение с пиколи-ном Бензонитрил в качестве апротонной кислоты образует молекулярные комплексы с органическими соединениями, содержащими атомы кислорода, азота или другие гетероатомы с неподеленной парой электронов. Считают что в случае бензонитрила в образовании комплексов с электронодонорными соединениями участвуют как нитрильная группа, так и бензольное кольцо, я-электронная плотность которого сильно понижена связанной с ним нитрильной группой. Поэтому предполагают З , что продукты взаимодействия бензонитрила с электронодонорными соединениями представляют собой комплексы с переносом заряда. [c.33]

    Сила основания определяется стабильностью образующегося катиона (сопряженной кислоты). Чем стабильней катион, тем сильнее основание. Стабильность катиона определяется суммой тех же факторов, что и стабильность аниона, с той лишь разницей, что влияние этих факторов на основность противоположно тому влиянию, которое они оказывали на кислотность. Например, наличие в углеводородном радикале электронодонорных заместителей будет способствовать стабилизации катиона и, следовательно, повышать силу основания. Напротив, электроноакцетхзрные заместители будут дестабилизировать катион и уменьшать основность соединения. Исходя из природы атомов кислорода, азота и серы, можно сделать вывод, что наиболее электроотрицательный атом кислорода за счет более прочного удерживания неподеленной пары электронов менее склонен присоединять протон по сравнению, например, с атомом азота. Действительно, амины обычно более сильные основания, чем спирты. Электроны атомов азота и серы менее прочно удерживаются ядром и более доступны для связи с протоном. Однако у атома серы электронная плотность рассредоточена в большем объеме по сравнению с атомом азота и кислорода. Плотность заряда становится меньшей и атом серы слабее связывает протон. Поэтому тиолы более слабые основания, чем амины и спирты. [c.159]

    С. В ядерных энергетических установках и теилообменных устройствах псиользуют газообразные Т. воздух, кислород, азот, водород, гелий, пеон, аргоп, двуокись углерода и т. д. Опи обладают высокой термической и хим. стабильностью, позволяют достигать высоких т-р при низких давлениях, их физ. св-ва незначительно изменяются в широком интервале т-р. Однако у газообразных Т. небольшая плотность, невысокая тенлоемкость и очень низкий [c.522]

    ПЛОТНОСТЬ, чем азот, получаемый из химических соединений, таких, как аммиак или нитраты. Рамзай предположил, что различие в цлотности объясняется присутствием в воздухе еще одного не открытого тяжелого газа. Ему удалось после удаления кислорода пропусканием воздуха над раскаленной медью связать азот воздуха раскаленным магнием. Оставшийся газ оказался новым химическим элементом с характерным спектром. Одновременно он был выделен лордом Релеем, удалявшим азот старым методом Пристли и Кавендиша (см.стр. 635). Оба исследователя назвали новый элемент за его химическую инертность (греческое аргос  [c.128]

    Результаты, приведенные в разделах 5.2—5.19, показывают, что для проявления ингибирующего наводороживание действия органические молекулы должны иметь определенные функциональные группы, способные вступать во взаимодействие с поверхностью стального катода. Такими группами являются —ОН (спиртовая), >С0 (карбонильная), —СООН (карбоксильная), —МНа (аминная), —50з (сульфогруппа). Связь с поверхностью металла осуществляется через атомы кислорода, азота и серы, причем, чем больше плотность электронов у этих атомов, тем больше эффективность ингибирующего наводороживание действия органических молекул, так как тем прочнее связь адмолекул ингибитора с поверхностью металла. [c.250]

    Для анализа взято 0,3358 г газовой смеси. Содер-жзние кислородз и азота соответственно 200 и 40 см при н. у. Выразите массовый состав газовой смеси в процентах, если плотность кислорода 1,4290 г/л, а плотность азота 1,2505 г/л. [c.54]

    Пример 2. Вычислить плотность азото-кислородной смеси, состоящей по объему из 21% О2 и 79% N3. Плотность кислорода 1,429 кг м , азота 1,251 кг1м . [c.13]


Смотреть страницы где упоминается термин Плотность кислород азот: [c.119]    [c.115]    [c.119]    [c.76]    [c.100]    [c.69]    [c.46]    [c.100]    [c.95]    [c.132]    [c.480]   
Справочник по физико-техническим основам криогенетики Издание 3 (1985) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Азот кислород



© 2025 chem21.info Реклама на сайте