Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа химической связи и межмолекулярного взаимодействия

    Исследование природы химической связи и строения молекул развивалось параллельно с изучением строения атома. К началу двадцатых годов были разработаны основы электронной теории химической связи (Льюис, Коссель, Борн). Квантово-механическая теория ковалентной связи развита Гейтлером и Лондоном (1927). Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. [c.19]


    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]

    Это объясняется тем, что свойства простых веществ не всегда однозначно определяются природой образующих их атомов, а в значительной мере зависят также от структуры, типа химической связи, межмолекулярного взаимодействия, условий образования и пр. [c.235]

    Периодическая зависимость свойств от атомного номера элемента у простых веществ проявляется сложнее, чем у свободных атомов. Это объясняется тем, что свойства простых веществ не всегда однозначно определяются природой образующих их атомов, а в значительной мере зависят также от структуры, типа химической связи, межмолекулярного взаимодействия, условий образования и пр. [c.257]

    С возникновением квантовой механики во второй половине 20-х годов наступил новый этап и в теории электронного строения органических соединений. Методы теоретической физики были применены для решения принципиальных вопросов химии для разработки учения о строении атомов и, что имело в глазах химиков особенно важное значение, строения их электронных оболочек для разработки учения о валентности атомов, о природе химической связи для интерпретации и затем расчета электронного строения и некоторых связанных с ним свойств молекул, сначала, конечно, простейших—типа молекулы водорода, а затем все более сложных, включая ароматические соединения. В конечном итоге методы квантовой механики нашли применение к основному объекту хили и — к превращениям химических соединений, к химическим реакциям, особенно к трактовке строения и свойств промежуточных продуктов реакций — ионов, радикалов, переходных (активированных) комплексов, а также сил межмолекулярного взаимодействия, роли катализатора и т. д. Часть квантовой механики, объектом изучения которой были частицы, интересующие химика, и реакции между ними, выделилась в относительно самостоятельную дисциплину, получившую название квантовой химии. [c.159]


    Вершиной атомно-молекулярной теории явилось создание квантовой механики, на основе которой удалось объяснить природу химических связей и сил межмолекулярного взаимодействия, познать внутреннее строение атомов и молекул, вскрыть законы их движения. [c.114]

    Растворы можно различать по агрегатному состоянию — твердые, жидкие и даже говорят о газообразных растворах, имея в виду газовые смеси. Последним, точнее идеально-газовым смесям, было уделено некоторое внимание в гл, V в связи с химическим равновесием. О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по св ему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (илн других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.262]

    Без знания строения атомов и молекул, природы химической связи и межмолекулярного взаимодействия сделать это невозможно. Однако эти сведения лишь необходимы, но не достаточны. Ведь свойства веществ познаются прежде всего во взаимодействии с другими веществами. Поэтому, приступая к изучению химии, нужно знать общие закономерности протекания химических реакций и сопровождающих их процессов. [c.3]

    ПРИРОДА ХИМИЧЕСКОЙ СВЯЗИ И МЕЖМОЛЕКУЛЯРНОГО ВЗАИМОДЕЙСТВИЯ [c.8]

    В сущности этими рассуждениями можно было бы и ограничиться. Классические структурные формулы дают строение отдельной химической частицы, которая или которые (катион + анион) и составляют соединение. Такая формула хорошо передает вид и число атомов и связывающих их связей. С помощью данных таблицы 1.2.2 можно на основе этой формулы оценить, какая энергия выделилась бы при образовании данного соединения из атомов в газовой фазе. Тем не менее оказалось, что значительную часть свойств органических соединений можно объяснить, только привлекая теории химической связи. Природа химической связи пока еще полностью не выяснена [1.2.2]. Ниже дается краткое изложение существенных для органической химии важнейших теоретических представлений, а также излагается качественное их применение для объяснения свойств некоторых классов соединений. В заключение разбираются несвязные и межмолекулярные взаимодействия. [c.53]

    Адгезия, или прилипание тел друг к другу, — одно из сложнейших явлений. Для ее объяснения существует довольно много различных теоретических подходов, но ни один из них самостоятельно полностью не решает всех проблем адгезии. С химической точки зрения адгезию можно объяснить химическими взаимодействиями между телами различной природы. Химические связи легко образуются на поверхности пластмасс, которые всегда содержат активные функциональные группы, способные химически взаимодействовать с металлами или с покрывающими поверхность металлов оксидами. Молекулярная теория объясняет явление адгезии проявлением на межфазной поверхности межмолекулярных сил, взаимодействием типа ион — диполь или образованием водородных связей. Этим, например, объясняют слипание при высыхании мокрых травленых пленок полиэтилена. Электрическая теория полагает, что при контакте двух тел образуется двойной электрический слой, препятствующий раздвижению тел [c.38]

    Квантовая теория является неотъемлемой частью современной химической науки, ее фундаментом. Главное значение квантовой химии заключается в том, что она создала систему представлений об электронном строении молекул, о природе химической связи и межмолекулярного взаимодействия. Квантовохимические представления лежат в основе интерпретации экспериментальных закономерностей. Очень важно, чтобы эта интерпретация всегда находилась в соответствии с современным уровнем квантовомеханической теории. Разумеется, последняя, в свою очередь, всегда должна проверяться экспериментом и максимально удовлетворять его запросы. [c.10]

    И.зучение ИК- и КР-снектров позволяет проводить структурногрупповой качественный и количественный анализ индивидуальных соединений и их смесей, определять симметрию сложных молекул, их геометрическую структуру, изомерию, полярность групп, межмолекулярное взаимодействие, наличие ассоциатов, внутри- и меж-молекулярных водородных связей, а также характеризовать природу химических связей. [c.69]


    В этой главе рассматриваются физико-химические константы, характеризующие природу химической связи, и межмолекулярное взаимодействие. [c.32]

    Точка отвечает химической связи между составными частями аддукта. Изображение состава веществ в виде аддуктов допускается, если химическая связь между составными частями аддукта относится к различным типам сильного и слабого межмолекулярного взаимодействия или природа этой связи выяснена недостаточно. Если же природа химической связи в соединении известна, формула должна нести в себе эту информацию и записываться соответственно (чаще всего в виде комплексного соединения, см.гл. 3)  [c.76]

    О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по своему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (или других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.285]

    Аналогия между процессом разрушения и химической реакцией сводится не только к разрыву связей. Она проявляется еще более отчетливо при сравнении элементарных актов, например разложения молекул и разрушения полимеров. При химическом взаимодействии сближающиеся молекулы реализуют запас кинетической энергии в процессе сближения и увеличивают запас потенциальной энергии системы. При этом начальные конфигурации атомов переходят в конечные и существует некоторая промежуточная конфигурация, являющаяся критической для данного процесса. Критическая конфигурация осуществляется тогда, когда состояние молекулы соответствует максимуму поверхности потенциальной энергии. Свойства поверхности потенциальной энергии определяют природу активированного комплекса так же, как это имеет место при протекании химической реакции, в ходе которой рвутся связи главных химических валентностей или при вязком течении, в ходе которого рвутся связи межмолекулярного взаимодействия. Энергия перераспределяется по степеням свободы колебательного или вращательного движения в соответствии с образованием новых конфигураций. Кинетический элемент, перейдя через потенциальный барьер, практически мгновенно теряет часть накопленной энергии. [c.249]

    Таким образом, каждый тип мембраны характеризуется видом взаимодействия молекул газа и структурных элементов матрицы. Количественными характеристиками этого.взаимодействия являются энергия связи и потенциал, зависящие от параметров межмолекулярного взаимодействия, молекулярной природы и морфологии матрицы мембраны. Энергия связи определяется тепловым эффектом, сопровождающим образование системы мембрана — газ для сорбционно-диффузионных мембран— теплотой сорбции, в реакционно-диффузионных мембранах, кроме энтальпии растворения газов, заметный вклад вносит тепловой эффект химической реакции. В газодиффузионных мембранах энергия связи близка к нулю. [c.14]

    Содер>кание дисциплины Задача flannofi дисциплины - освоение студентами теоретических основ химии и химии элементов и их соединение . В связи с этим программа состоит из двух разделов. Первы содержит основы теории, без которых невозможно понимание свойств и превращений- неорганических веществ современные представления о природе химической связи, строении ве-вещства и межмолекулярном взаимодействии общие закономерности протекания химических процессов изгалаются с привлечением химической термодинамики и кинетики. Второй раздел поввящен систематическому обзору свойств химических элементов и их соединений и включает общую характеристику элементов, способы получения и свойства элементарных веществ, а также некото Я1х соединений, применяемых в различных отраслях народного хозяйства, особенно в нефтеперерабатывающей промышленности. [c.178]

    Цель книги — показать, как по картине рассеяния рентгеновского излучения, электронов и нейтронов определяется молекулярная структура веществ от простейших по составу до сложных биологических объектов обобщить результаты исследований строения молекул, структуры различных типов индивидуальных жидкостей, металлических расплавов, растворов электролитов и неэлектролитов, жидких кристаллов н аморфных веществ изложить теорию рассеяния рентгеновского излучения иод обычными и малыми углами, дифракции электронов и нейтронов, методику и технику эксперимепта, общие представления о природе химических связей и сил межмолекулярного взаимодействия. В основу книги положены лекционные курсы, читаемые для студентов Киевского ордена Ленина государственного университета имени Т. Г. Шевченко, специализирующихся по молекулярной физике, а также написанное автором учебное пособие Структурный анализ жидкостей (1971). [c.3]

    В учебнике по-новому излаг-аются вопросы химической атомисшки и стехиометрические законы химии. Даны современная трактовка фундаментальных законов химии, квантово-химическая трактовка природы химической связи, > ч(>ние о кимических пр<щсс< а, -, основы химии межмолекулярного взаимодействия, включая комплексообразование. Наряду с жидкими раствор,ами бользиое внимание уделено химии твердых рги тБоров. [c.2]

    Формулы. Аддукты (продукты присоединения) типа молекула - молекула или ион - молекула принято изображать формулами составных частей с точкой между ними. Составные части аддуктов перечисляются в формуле в порядке увеличения их числа (например 8Кг ДбНгО, SO2 Н2О, СаС 2 8NH3). Точка отвечает химической связи между составными частями аддукта. Изображение состава веществ в виде аддуктов допускается, если химическая связь между составными частями аддукта относится к различным типам сильного и слабого межмолекулярного взаимодействия или природа этой связи выяснена недостаточно. Если же природа химической связи в соединении известна, формула должна нести в себе эту информацию и записываться соответственно (чаще всего в виде координационного соединения, см. п. 1.3). [c.22]

    С точки зрения теоретической химии особое значение имеют сведения о функциях дипольного момента г(г) и поляризуе-мости а(г) молекул, позволяющие делать важные выводы о природе химической связи. Как видно из формул (2.55) и (2.65) эти функции могут быть построены на основании результатов количественого изучения спектров инфракрасного поглощения и спектров комбинационного рассеяния, причем точность такого построения зависит от числа обертонов (или линий порядка выше первого), интенсивности которых, определяющие коэффициенты в разложениях (2.55) и (2.65), удйется измерить. В последнее время получают развитие также независимые способы нахождения функций ц(г) и а (г), базирующиеся на методах спектроскопии универсальных межмолекулярных взаимодействий. [c.120]

    Это уравнение показывает, что разрушение полимера развивается во времени и скорость его определяется тепловыми флуктуациями, зависящими от значения кТ. Под влиянием внешних нагрузок происходит ориентация макромолекул и затем их смещение относительно- друг друга, если силы межмолекулярного взаимодействия малы, или их разрушение при достижении критического напряжения. Для разрыва макромолекул необходимо преодолеть энергетический барьер цо, величина которого зависит от природы химических связей и силы межмолекулярного взаимодействия. Если макромолекула находится в напряженном состоянии, то энергетический барьер ее разрыва уменьшается на величину уо. Следовательно, чем больше нагрузка на материал, тем ниже энергетический барьер разрыва. Прочность ковалентных ординарных связей между углеродными атомами колеблется в пределах от 4 Ю" до 6 ГО дин1связь. По мере понижения температуры, увеличения молекулярного веса, полярности звеньев цепи и плотности упаковки усиливается межмолекулярное взаимодей- [c.222]

    Глубина потенциальной ямы (ван-дер-ва-альсова энергия взаимодействия на равновесном расстоянии Sq) мала 1 5 кДж/моль ( в 100 раз меньше энергии химической связи), равновесное расстояние между центрами молекул в жидкости или кристалле 3 10 — 5 10" м ( 3 н- 5 A) значительно превышает межъядерное расстояние в молекулах. Однако китайской стены между химическим и ван-дер-ваальсовым взаимодействием нет, природа взаимодействия одна и та же, электрическая. Аналитическое выражение для потенциальной кривой межмолекулярного взаимодействия (рис. 62) имеет вид [c.135]

    Структура граничных слоев при прочих равных условиях обусловлена физико-химическими свойствами образующих ее веществ. По А. И. Китайгородскому, в межмолекулярных взаимодействиях основную роль играет форма молекул, иначе говоря, их локальные микрополя, а не результирующие силовые направления. Межмолекулярные силы в полимолекулярных граничных слоях в большинстве случаев имеют физическую природу. Среди межмолекулярных связей физической природы особый интерес представляют водородные связи, энергия которых сравнительно велика ( 10 ккал/моль). Этот вид связи составляет одну из неотъемлемых характеристик межмолекулярного взаимодействия молекул углеводородов. Такая связь наблюдается во всех агрегатных состояниях она определяет многочисленные виды ассоциаций молекул. [c.68]

    Когда концентрация ассоциатов и расстояние между ними достигают определенной величины, они под действием сил межмолекулярного взаимодействия сращиваются. Чем ниже температура процесса, тем толще сольватный слой между ассоииатами, тем труднее они сращиваются и тем больше времени требуется для процесса коксования. От числа и природы связей, возникающих между ассоциатами и внутри них, зависят свойства получаемого кокса. По мере повышения температуры коксования возрастает доля химических связей вследствие уменьшения числа нежёстких ван-дер-ваальсовых и водородных связей. Поскольку эиергия взаимодействия последних на один — два порядка ниже, чем у химических связей, структура кокса упрочняется. [c.185]


Смотреть страницы где упоминается термин Природа химической связи и межмолекулярного взаимодействия: [c.2]    [c.258]    [c.213]    [c.254]    [c.18]    [c.224]    [c.268]    [c.70]    [c.89]    [c.258]    [c.382]    [c.486]    [c.89]   
Смотреть главы в:

Краткий курс физической химии -> Природа химической связи и межмолекулярного взаимодействия

Краткий курс физической химии Издание 2 -> Природа химической связи и межмолекулярного взаимодействия




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные

Природа межмолекулярных сил

Природа сил межмолекулярного взаимодействия

РНК химическая природа

Связь природа

Связь химическая межмолекулярная

Химическая связь

Химическая связь связь

Химический связь Связь химическая

природа связе



© 2024 chem21.info Реклама на сайте