Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барьер реакции

    В присутствии катализатора потенциальный барьер реакции (т. е. уровень, отвечающий энергетическому состоянию активного комплекса) снижается на величину теплоты адсорбции активного комплекса. Из этого следует, что энергия активации fu в присутствии катализатора, рассчитанная по уравнению Аррениуса на основании экспериментальных данных, соответствует разности энергии активации Е, в гомогенной системе и теплоты адсорбции активного комплекса. Величина Е п называется кажущейся энергией активации. [c.281]


    Аналогичные поверхности потенциальной энергии были вычислены и для других систем атомов на рис. 22-9 показана такая поверхность для реакции Нг -Ь Вг Н + НВг. В этом случае поверхность имеет иную форму, потому что молекула Нг устойчивее, чем НВг. По мере приближения атома Вг к молекуле Нг он отталкивает атомы Н друг от друга. Активированный комплекс (точка 2) характеризуется вдвое большим расстоянием между атомами Н, чем в молекуле Нг, но атомы Н и Вг находятся почти на таком же расстоянии друг от друга, как и в изолированной молекуле НВг. В этом случае активированный комплекс почти совпадает с молекулой НВг, и не удивительно, что он всего на 15 кДж моль менее устойчив, чем молекула НВг. Вычисленные поверхности потенциальной энергии, подобные приведенной на рис. 22-9, как раз и являются основой для построения широко распространенных изображений барьеров реакций, примеры которых показаны на рис. 22-5 Построение профилей потенциальной энергии типа показанных на рис. 22-9,6 сохраняет смысл даже для реакций с участием настолько сложных молекул, что нет возможности вычислить или хотя бы графически представить их полную многомерную поверхность потенциальной энергии. [c.376]

    Кибернетика каталитического процесса. Катализ в широком смысле слова не сводится к одному лишь простому снижению барьера реакции, идущей без катализатора. Для катализа главное не только и не столько ускорение химических реакций, сколько целый комплекс функций управления, регулирования, программирования химических и биохимических процессов, совокупность которых естественно назвать кибернетикой каталитического процесса [81]. Высокие скорости — не обязательная и не самая существенная особенность катализа. К кибернетическим функциям катализаторов можно отнести следующие [81] 1) обеспечение многократной повторяемости этапов единственно возможного или резко преобладающего каталитического процесса ( кинетического потока ) 2) обеспечение преобладания одной или нескольких определенных реакций из числа возможных 3) обеспечение сопряжения двух или нескольких процессов 4) получение заранее заданной химической и пространственной структуры продукты реакции (табл. 7.2). [c.303]

Рис. 1.7. Зависимость энергетического барьера реакции от адсорбционного потенциала катализатора для случая, когда одна из стадий эндотермична. Рис. 1.7. Зависимость <a href="/info/363570">энергетического барьера реакции</a> от <a href="/info/3866">адсорбционного потенциала</a> катализатора для случая, когда одна из стадий эндотермична.

    Под действием излучений большой энергии из молекул газа тоже могут образовываться различные частицы — атомы, радикалу, ионы и возбужденные молекулы. Образование радикалов и ионов обычно приводит к вторичным химическим превращениям. Возбуждение же молекул может приводить к вторичным реакциям только при условии, что энергия возбуждения выше энергетического барьера реакции. [c.553]

    При полном разрыве связей в реагирующей молекуЛе энергия активации должна равняться энергетическому барьеру реакции. [c.64]

    Руководствуясь принципом энергетического соответствия, были найдены (табл. 2.9) высоты энергетических барьеров реакции Е, тепловые эффекты реакции и, сумма энергий реагирующих связей 5 и адсорбционные потенциалы катализатора д. [c.48]

    Однако, как показано Баландиным, легкость гидрогенолиза связей нужно оценивать с учетом энерги образования новых связей осколков молекул с поверхностными атомами катализатора. Это изменяет энергетический барьер реакции. Для никелевого катализатора оп составляет (в кДж/моль)  [c.299]

    Согласно теории соударений, химическое взаимодействие имеет место при каждом соударении реагирующих частиц, обладающих достаточной энергией для преодоления потенциального барьера реакции и должным образом ориентированных относительно друг друга. [c.74]

    Поскольку д в и д2 есть энергии активации прямой и обратной стадий, то "дв — д в есть тепловой эффект образования АВ, т. е. Qдв. Так как есть высота потенциального барьера реакции АВС, то величина дв, с+ а.в — лв есть высота потенциального барьера по отношению [c.95]

    Во-вторых, не всякое столкновение частицы с активным участком поверхности приводит к реакции. Пусть р — вероятность того, что частица в момент соударения с активным участком поверхности будет иметь нужную ориентацию. Доля частиц, имеющих энергию больше, чем — высота потенциального барьера реакции — составляет ехр(—E.JRT). Тогда вероятность того, что при соударении частицы с поверхностью произойдет реакция, будет равна [c.100]

    Чрезвычайно трудно идет и, следовательно, имеет высокий энергетический барьер реакция [c.110]

    Поскольку а,в и ав — это энергии активации прямой и обратной стадий, то Еаъ — а,в представляет собой тепловой эффект образования АВ, т. е. (Зав. Так как Еаъ.с — высота потенциального и барьера реакции АВ + С, то величина ав.с+ а,в — ав представляет собой высоту потенциального барьера по отношению к исходным частицам, т. е. собственно потенциальный барьер реакции Е (рис. 31)  [c.89]

    Теория активированного комплекса. Потенциальная поверхность и энергетический барьер реакции [c.237]

    Перенос энергии происходит в результате столкновений между молекулами. Поэтому за определенный промежуток времени какая-нибудь молекула изонитрила может приобрести энергию, достаточную для преодоления энергетического барьера и превращения в молекулу ацетонитрила. При любой температуре лишь небольшая часть столкновений происходит с энергией, достаточной для преодоления барьера реакции. Однако, как видно из рис. 9.10 (см. ч. 1), при повышении температуры распределение молекул газа по скоростям смещается в сторону более высоких значений. Такими же свойствами обладает распределение молекул по кинетической энергии (рис. 13.8). При повышении температуры увеличивается доля молекул, энергия которых превышает минимум, необходимый для осуществления реакции. [c.17]

    Если рассматривать ]gk как одну переменную, а 1/Г как другую переменную, то график уравнения (13.20) представляет собой прямую линию. Тангенс угла наклона этой прямой определяется величиной -EJ2,30R, а точка ее пересечения с осью ординат (при 1/Т = 0) находится на высоте gk = %А над осью абсцисс. Это позволяет использовать уравнение (13.20) для определения барьера реакции по графику зависимости [gk от 1/Т. [c.18]

    Допустим, что мы вводим катализатор в реакционную систему, описываемую уравнением (14.12), что вызывает понижение барьера реакции, как это показано штриховой линией на рис. 14.5. В присутствии катализатора повышаются скорости как прямой, так и обратной реакций. В самом деле, катализатор оказывает одинаковое влияние на константы скоростей прямой и обратной реакций. Другими словами, никакой катализатор не способен снизить барьер активации только прямой, но не обратной реакции. Поскольку константы скоростей прямой и обратной реакций подвергаются одинаковому воздействию, их отношение не меняется. На этом основано правило, согласно которому катализатор изменяет скорость достижения равновесия, но не влияет на значение константы равновесия. [c.58]

    Зависимость скорости реакции от температуры. Молекулярно-кинетическая теория газов и жидкостей дает возможность подсчитать число соударений между молекулами тех или иных веществ при определенных условиях. Если воспользоваться результатами таких подсчетов, то окажется, что число столкновений между молекулами веществ при обычных условиях столь велико, что все реакции должны протекать практически мгновенно. Однако в действительности далеко не все реакции заканчиваются быстро. Это связано с необходимостью преодоления энергетического барьера реакции — энергии активации. Это осуществляют только активные молекулы, имеющие энергию выше, чем Е ,. [c.197]


    В равновесной кинетике не ставится вопрос, какие степени свободы реагентов эффективны в преодолении активационного барьера реакции, и множитель ехр(— / 7 ) в уравнении Аррениуса интерпретируется как относительная доля молекул, обладающих полной энергией (независимо от распределения по отдельным видам), достаточной для преодоления барьера. Однако предположение о равновесном протекании реакции во многих случаях не всегда выполняется, и тогда надо пользоваться неравновесной функцией распределения и в явном виде учитывать вклад отдельных степеней свободы в процесс преодоления активационного барьера. Наиболее велики отклонения от равновесности в так называемых быстрых реакциях, для [c.63]

    Энергией активации реакции согласно теории соударений называется минимальная энергия (в расчете на 1 моль), которой должны обладать реагирующие частицы, чтобы столкновение между н[ши привело к взаимодействию. Частицы, энергия которых больше или равна Е, называются активными. Эта энергия необходима для преодоления энергетического барьера реакции. Столкновение будет эффективным, если суммарная величина энергии сталкивающихся частиц равна или больше энергии активации Е, характерной для данной реакции. Для сложной реакции (протекающей в несколько стадий) параметр Е в уравнении Аррениуса не равен энергии активации лимитирующей стадии, а представля- [c.333]

    Энергией активации реакции называется минимальная энергия (в расчете на 1 г-моль), которой должны обладать реагирующие частицы, чтобы столкновение между ними привело к реакции. Частицы, энергия которых больиге или равна , называются активными. Эта энергия необходима для преодоления энергетического барьера реакции, т. е. по современным представлениям, для преодоления энергии отталкивания электронных облаков сталкивающихся молекул. Столкновение будет эффективным, если суммарная величина энергии сталкивающихся частиц равна или больше энергии активации Е, характерной для данной реакции. Если реакция сложная (протекает в несколько стадий), то параметр Е в уравнении Аррениуса не имеет простого физического смысла и представляет некоторую функцию энергий активации отдельных стадий или вообще эмпирическую величину. Одиако и нри этом [c.339]

    Как теория столкновений, так и теория абсолютных скоростей реакций основывается па представлении об энергии активации, которая играет роль барьера реакции. В этом смысле обе они основываются на данном еще Аррениусом объяснении температурной зависимости констант скорости. Теория столкновений фокусирует внимание на столкновении двух реагирующих молекул, тогда как теория абсолютных скоростей реакций уделяет больщее внимание комплексу, образуемому после столкновения, и исходит из предположения о существовании равновесия между этим комплексом и реагентами. Теория столкновений использует представление об энергии активации, утверждая, что все молекулярные пары, не имеющие этой энергии при столкновении, должны оттолкнуться, а не прореагировать друг с другом. Вместо этого теория абсолютных скоростей постулирует, что большая энтальпия образования активированного комплекса означает малую величину константы равновесия и, следовательно, низкую концентрацию активированного комплекса. Если считать, что комплекс образуется, когда две молекулы имеют энергию, требуемую теорией столкновений, то становится понятным, что обе рассматриваемые теории по сути не что иное, как две разные точки зрения на одно и то же явление. [c.379]

    Величина активациошюго барьера реакции определяется двумя факторами-энтальпией активации и энтропией активации. Осуществлению реакции благоприятствует низкий барьер энтальпии и большая положительная (или по крайней мере не отрицательная) энтропия активации. Если активированный комплекс характеризуется намного большей упорядоченностью по сравнению с реагентами, энтропия активации имеет большое отрицательное значение и реакция замедляется. [c.393]

    Равновесные реакции. Если микроскопические скорости реакции для всех состояний реагирующей молекулы малы по сравнению с микроскопическими скоростями релаксации, то нарушения равновесности нет (точнее, почти нет) и реакцию можно рассматривать как равновесную. Используя понятие характеристического времени реакции т .р = 1//с, можно утверждать, что условием равновесности является вьшолнение требования т .р Трел-При умеренных температурах молекулы преимущественно находятся в основном колебательном состоянии, и внутренние степени свободы (крлебательные, вращательные и т. д.) не играют существенной роли. Основной вклад в преодоление активационного барьера реакции вносят поступательные степени свободы, а по ним равновеспе устанавливается достаточно быстро. Оценки показывают, что достаточно 3—10 соударений для того, чтобы установилось равновесное распределение. [c.97]

    Интересной особенностью такого присоединения, позволяющего использовать его для оригинальных химических синтезов (см. ниже), является невыполнение правила Марковникова. Это объясняется преимущественным образование-м наиболее стабильного ра-дикала-аддукта, поскольку в этом случае энергетический барьер реакции оказывается наименьшим. Поэтому, в соответствии с теорией Райса, при гомологическом присоединении радикала к олефину будет образовываться линейный аддукт  [c.81]

    Поскольку кинетический барьер между конформациями А и Б, по сравнению с кинетическим барьером реакции расширения цикла, ничтожен, то конечный состав образующихся продуктов должен зависеть только от энергетического уровня переходного состояния. Интересно, что в рассматриваемых далее случаях, в меньших количествах обычно образовывались углеводороды, возникновение которых связано с такими конформациями исходных соединений, которые или уже имеют взаимодействия мешду замещающими кольцо радикалами, либо характерны тем, что вваи-модействия эти возникают в процессе самой перегруппировки. (Это, однако, не относится к взаимодействиям в образующихся углеводородах.) [c.166]

    Рассмотрим теперь влияние полярного фактора на положение активированного комплекса на поверхности потенциальной энергии. Пусть реагентом является атом хлора. Его высокое электронное сродство ведет к поляризации активированного комплекса, который можно представить в виде R+- -Н- - h. Такая поляризация обеспечивает добавочную движущую силу за счет дальнодействую-щих кулоновских сил. Снижается потенциальный барьер реакции (см. табл. 15.1) и активированный комплекс сдвигается из области А [c.150]

    Теория активных столкновений (Аррениус) оспована на том, что химическое взаимодействие осуществляется только при столкновении активных частиц, которые обладают достаточной энергией для преодоления потенциального барьера реакции и ориентированы в пространстве друг относительно друга. Чтобы произошла реакция, частицы в момент столкновения должны обладать некоторым минимальным избытком энергии, называемым энергией активации. [c.335]

    Примером такой реакции является реакция (111.40) прямого распада бромистого этила на бромистый водород и этилен в газовой фазе. Эта реакция имеет энергию активации 53,7 ккал/моль, в то время как ее тепловой эффект всего 2 ккал/моль. Следовательно, активационный барьер реакции составляет 34,5 ккал/моль. Столь высокий барьер, по-видимому, обусловлен тем, что в активированном комплексе сильно искажаются валентные углы и длины связей. Атомы И и Вг в неискаженной молекуле СоНаВг не могут оказаться на расстоянии, меньшем 2,54 А (рис. 34), в то время как в конце реакции в молекуле НВг они должны сблизиться до расстояния 1,41 А. Поэтому в активированном комплексе должны быть сильно искажены углы Н—С—С и С—С—Вг, а также длины связей С—Н и С—Вг. [c.108]

    Поскольку предэкспоненциальные множители "в элементарных реакциях могут быть оценены с помощью теории абсолютных скоростей реакций, наибольший интерес представляет возможрюсть оценки с помощью корреляционных соотношений величин энергий активации. Для гомолитических реакций отрыва атома от молекулы свободным атомом или радикалом удовлетворительно выполияется соотношение Поляньи — Семенова, связывающее высоту активационного барьера реакции Е с ее тспловьгм э( )фектом Q  [c.129]

    Изменения энтальпии прямой и обратной реакции были названы энергиями активации. Аррениус, которому принадлежат эти рассуждения, придал энергии активации смысл минимальной энергии, которой должны обладать частицы, чтобы вступить в химическую реакцию. Энергия активации таким образом является потенциальным барьером реакции. В дополнение к определению понятия элементарной реакции, приведенному на стр. 220, следует прибавить, что такая реакция происходит с преодолением единственного потенциального барьера. Интегрирование любого из кинетических уравнений при допущении независимости энергии активации от температуры дает (рис. XVII. 3) [c.235]

    На рис. XVII. 5,6 я в изображены проекции движения фигуративной точки на некоторую плоскость, проведенную через две энергетические нормали (у начальной и конечной фигуративных точек). Вершина кривой представляет собой потенциальный барьер реакции. На самом деле путь фигуративной точки не лежит в одной вертикальной плоскости, поэтому проходимый проекцией фигуративной точки путь (путь реакции) не следует рассматривать как реальную длину. [c.238]

    Следоьателыю, скорость химической реакции зависит от величины энергии активации чем она больше, тем медленнее будет протекать данная реакция. С другой стороны, чем меньше энергетический барьер реакции, тем большее число молекул будет обладать необходимой избыточной энергией и тем быстрее будет протекать эта реакция. Итак, скорость химической реакции в конечном итоге зависит от соотношения между числом активных и неактивных молекул. [c.155]

    Согласно концепции Ламри, изменение конформации белковых макромолекул при образовании и превращении фермент-суб-стратных комплексов приводит к нарушению одних контактов и образованию других, к конформационному давлению на субстрат и каталитические группы, тем самым способствуя снижению энергетических барьеров реакции. При этом выполняется правило лол<-плементарности свободной энергии химической реакции и конфор-мационной энергии макромолекулы, в результате чего происходит сглаживание энергетического рельефа суммарного процесса. [c.188]

    Для самого активного (оптимального) катализатора величина эиергетргческого барьера реакции оказывается равной половине теплового эффекта реакции Я  [c.299]

    Поэтому чем ниже уровень активационного барьера реакции, тем выше ее скорость. Подобно тому как катализатор способен снизить активационный барьер и тем самым увеличить скорость химической реакции, так и образование между реагентами (мономерами) КПЗ аналогично своеобразному активированному комплексу — переходному состоянию, способствует достижению той же цели, т. е. в рассматриваемых примерах приводит к повышению скорости сополимеризации. При радиационной сопо-ли.меризаци1г пары мономеров, образующих КПЗ, катализатор (инициатор) исключен, а энергия активации элементарной стадии инициирования близка к нулю, так как реакция инициируется излучением и не лимитируется диффузией. [c.15]


Смотреть страницы где упоминается термин Барьер реакции: [c.389]    [c.31]    [c.156]    [c.64]    [c.95]    [c.134]    [c.124]    [c.215]   
Химия горения (1988) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер



© 2025 chem21.info Реклама на сайте