Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция ионов. Образование двойного электрического слоя

    I. АДСОРБЦИЯ ИОНОВ. ОБРАЗОВАНИЕ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ [c.64]

    Используя модель Гуи-Чепмена, удалось объяснить наблюдаемые на опыте явления. С ее помощью была объяснена зависимость емкости двойного электрического слоя от температуры. Однако и эта модель имеет недостатки. В частности, она не учитывает размеры ионов, их взаимодействие с другими ионами, стерические факторы. Об упущениях модели Гуи-Чепмена свидетельствует и то, что в ней не учитывается специфическая адсорбция ионов. Возникновение двойного электрического слоя может быть результатом специфической адсорбции катионов или анионов на электроде с образованием адсорбционных слоев. Адсорбированные ионы притягивают из раствора ионы противоположного знака и на поверхности металла появляется двойной электрический слой. Он может возникнуть и в результате адсорбции поверхностно-активных веществ, например полярных молекул воды. В частности, в водных растворах электролитов на поверхности металлов всегда имеется двойной электрический слой из-за адсорбции диполей воды. [c.128]


    Возможно также образование двойного электрического слоя, обусловленного одновременно несколькими причинами, например ионно-адсорбционного слоя при адсорбции поляризуемых атомов кислорода на поверхности металла в условиях перехода катионов из металла в электролит (рис. 106, к) — ионно-адсорбционный потенциал. [c.150]

    В результате избирательной адсорбции ионов и образования двойного электрического слоя на поверхности капелек эмульсии возникает электрический заряд. [c.31]

    Электростатическая теория устойчивости дисперсных систем приложима к тем системам, устойчивость которых обеспечивается только электростатическим фактором. В реальных же дисперсных системах наблюдается в лучшем случае преобладание того или иного фактора устойчивости. Однако электростатический фактор устойчивости характерен для наиболее распространенных систем с водными средами, создающими условия для диссоциации. Механизм образования электростатического барьера связан с механизмом образования двойного электрического слоя поверхностная диссоциация вещества частиц, адсорбция электролитов, в том числе ионогенных ПАВ и ВМС, и ориентирование диполей молекул растворителя илн растворенных веществ. Так как электростатический барьер определяется, главным образом, электрическим потенциалом и толщиной двойного электрического слоя (VI. 103), то, очевидно, он будет возрастать с увеличением поверхностной диссоциации, количества адсорбируемых потенциалопределяющих ионов и прочности их закрепления, а также с уменьшением взаимодействия противоионов с поверхностью (увеличение толщины двойного слоя). При наличии на поверхности функциональных групп, обладающих слабыми кислотно-основными свойствами, значение потенциала и соответственно потенциального барьера зависит от pH среды. Электролит-стабилизатор должен иметь одии иои с достаточным сродством к веществу частицы (заряжение поверхности), другой—к растворителю (для обеспечения диссоциации электролита-стабилизатора и достаточной толщины двойного слоя). [c.332]

    Различают три механизма образования двойных электрических слоев 1) поверхностная диссоциация функциональных групп, 2) адсорбция ионов электролитов и 3) ориентирование полярных молекул на межфазной границе. В результате указанных взаимодействий поверхность со стороны одной фазы заряжается положительно, а со стороны другой—отрицательно. [c.77]

    Ко второму типу механизма образования двойного электрического слоя и возникновения разности потенциалов между двумя фазами относится случай, когда ни положительно, ни отрицательно заряженные частицы не покидают свои фазы в сколько-нибудь заметных количествах, однако частицы одного знака адсорбируются на поверхности раздела в больших количествах, чем частицы другого знака. Возникновение двойного электрического слоя при этом обусловлено ориентацией адсорбированных молекул растворителя и перераспределением ионов. Адсорбция [c.165]


    Получают эмульсии перемешиванием смеси разнополярных жидкостей (масла и воды) в присутствии стабилизатора эмульсии -эмульгатора. В качестве последних могут служить поверхностноактивные вещества (ПАВ), высокомолекулярные соединения ВМС), порошки. Стабилизирующее действие эмульгаторов объясняется образованием двойного электрического слоя при адсорбции на поверхности капелек фазы ионов образованием структурированных гелеобразных слоев эмульгатора микроброуновским движением углеводородных цепей, приводящем к взаимному отталкиванию капелек в эмульсиях типа в/м] образованием брони из крупинок щелочноземельных мыл или порошкообразного эмульгатора. [c.63]

    Из ионной природы двойного слоя на поверхности твердого диэлектрика следует необходимость существования в растворе ионных пар, или диполей, способных определенным образом ориентироваться по отношению к границе раздела. Если таких ионных пар, или диполей, на границе раздела фаз не имеется, то двойной электрический слой на поверхности образоваться не. может. При рассмотрении сложного процесса взаимодействия двух фаз на границах твердое тело—жидкость и жидкость—жидкость, связанного с переходом заряженных частиц —ионов через границу раздела и образованием двойного электрического слоя, можно различать отдельные случаи, когда преобладающую роль играют процессы диссоциации поверхностных молекул или адсорбции ионов одного знака заряда. Во всех этих случаях двойные слои имеют обычно диффузный характер и разноименные части двойного слоя располагаются по обе стороны границы раздела. [c.14]

    При отрицательном заряде поверхности ртути к ней будут притягиваться из раствора катионы N3+ и отталкиваться от нее анионы Р . С другой стороны, при д>0 будет наблюдаться положительная адсорбция анионов (Г >0) и отрицательная адсорбция катионов (Г+<0). Характерной особенностью образования двойного электрического слоя во втором примере является то, что взаимодействие ионов раствора с поверхностью электрода чисто электростатическое, а потому при п. н. 3. [c.27]

    Третий пример образования двойного электрического слоя, как и второй, отвечает идеально поляризуемому электроду, но в таком растворе, где адсорбция ионов на поверхности электрода обусловлена не только чисто кулоновскими силами, а и другими более сложными [c.27]

    Четвертый пример образования двойного электрического слоя реализуется на идеально поляризуемом электроде при наличии в растворе поверхностно-активных полярных молекул органического вещества. Предположим дополнительно, что ионы электролита являются поверхностно-неактивными, а потенциал электрода за счет внешнего источника тока подобран так, что заряд поверхности равен нулю. В качестве примера можно привести находящийся при п. н. з. ртутный электрод, который погружен в раствор NaF, содержащий некоторое количество н-бутилового спирта. Бутиловый спирт адсорбируется на незаряженной поверхности так, что к поверхности ртути направлен радикал С Н,, а в раствор — гидроксильная группа. Поскольку углеводородный радикал несет небольшой положительный заряд, а группа ОН — отрицательный, то при адсорбции бутилового спирта на незаряженной поверхности ртути возникает некоторый скачок потенциала, изменяющий гальвани-потенциал А ф относительно его значения в чистом растворе NaF при =0. Это изменение можно определить экспериментально по сдвигу п. н. 3. при переходе от чистого раствора NaF к раствору с добавкой бутилового спирта. [c.28]

    Третий случай образования двойного электрического слоя, как и второй, отвечает идеально поляризуемому электроду, но в таком растворе, где адсорбция ионов на поверхности электрода обусловлена не только чисто кулоновскими силами, а и другими более сложными видами взаимодействия, которые обычно объединяются общим тер- [c.29]

    Из рассмотренных примеров следует, что образование двойного электрического слоя всегда тесно связано с адсорбцией на границе электрод — раствор ионов и полярных молекул. Чтобы изучить строение двойного электрического слоя, помимо адсорбционных данных необходимо знать приведенные потенциалы фо и заряды поверхности электрода д. На основе этих данных далее строится модель двойного слоя, описывающая распределение заряженных частиц и потенциала в зависимости от расстояния до поверхности электрода, а эти сведения используются в теории электрохимической кинетики. [c.147]

    Определение адсорбции анионов серной кислоты на платинированной плати-тине методом измерения электропроводности. Образование двойного электрического слоя сопровождается переходом ионов из объема раствора на границу раздела электрод/раствор или, наоборот, от границы раздела в объем жидкой фазы. [c.204]


    На границе раздела твердая частица — жидкость возникает-двойной электрический слой из-за присутствия ионных пар на поверхности. Образование такого слоя возможно двумя путями. Один путь — преимущественная адсорбция одного из присутствующих в растворе иона, входящего в состав твердой фазы или изоморфного с ней. Другой путь образования двойного электрического слоя на границе раздела твердое тело (диэлектрика)—жидкость, т. е. диссоциация поверхностных молекул твердого тела с образованием ионов определенного знака в растворе. Ионы, сообщающие заряд твердой фазе, называются потенциалопределяющими, а ионы, остающиеся в растворе, — противоиона ми. [c.263]

    Ионная адсорбция может протекать по двум основным механизмам 1) как эквивалентная или ионообменная адсорбция 2) как избирательная адсорбция ионов на кристаллах. И в том, и в другом случае адсорбция ионов связана с образованием двойного электрического слоя (ДЭС) на границе раздела твердой и жидкой фаз. [c.338]

    Выше (см. 20.5) были рассмотрены пути образования двойного электрического слоя (ДЭС) на границе раздела коллоидных частиц и дисперсионной среды. ДЭС возникает на границе твердое тело — жидкость либо в результате преимущественной адсорбции ионов одного знака на твердой поверхности, либо в процессе диссоциации твердого вещества с поверхности. Независимо от механизма образования ДЭС непременным условием его возникновения является достаточно высокая плотность расположения зарядов в слое потенциалобразующих ионов. Электростатические силы притяжения такого слоя способствуют возникновению второго, компенсирующего, слоя из ионов противоположного знака. [c.398]

    Явления коагуляции и пептизации связаны с разрушением и образованием двойного электрического слоя. Адсорбция того или иного иона может привести к перемене знака заряда коллоидной частицы. Это состояние системы называют изоэлектрической точкой. Изоэлектрическая точка может быть охарактеризована концентрацией иона, pH раствора, ионной силой раствора. [c.421]

    Образование ионных двойных электрических слоев может происходить так же, как и в золях, в процессе взаимодействия с поверхности частиц с дисперсионной средой. Адсорбция ионов частицами суспензии может сопровождаться образованием двойного электрического слоя с определенной величиной -потенциала. В других случаях адсорбция ионов может повести к снижению -потенциала и к коагуляции суспензии. [c.344]

    Электрические свойства коллоидных частиц обусловлены адсорбцией ионов и образованием двойного электрического слоя (см. 2). [c.231]

    Причинами пептизации являются либо удаление из осадка коагулирующих ионов, либо образование двойных электрических слоев или сольватных оболочек у коллоидных частиц вследствие адсорбции ими ионов пептизатора. Точных количественных соотношений меж- [c.235]

    Пептизация может происходить вследствие удаления из раствора коагулирующих ионов, вызывающих укрупнение части, или адсорбции пептизатора, сопровождающейся образованием двойного электрического слоя и возникновением сольватной оболочки на коллоидных частицах. Во всех случаях частицы разобщаются между собой и вследствие теплового движения распределяются по всему объему дисперсионной среды. [c.116]

    Не обладая седиментационной устойчивостью, суспензии могут быть устойчивы агрегативно, т. е, их частицы сохраняют постоянные размеры. Агрегативная устойчивость суспензий обусловлена тем, что их частицы имеют на поверхности двойной электрический слой или сольватную оболочку. Механизм образования двойного электрического слоя преимущественно адсорбционный, т. е. двойной слой формируется благодаря адсорбции на поверхности твердой частицы одного из ионов присутствующего в дисперсионной среде электролита. Значение электрокинетического потенциала суспензии близко к потенциалу золей, и агрегативная устойчивость в этом случае определяется электростатическим отталкиванием одноименно заряженных частиц. [c.222]

    ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, разность электростатич. потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение Э. п. обусловлено пространств. разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя. На фанице между металлич. электродом и р-ром электролита пространств, разделение зарядов связано со след, явлениями переносом ионов из металла в р-р в ходе установления электрохим. равновесия, кулоновской адсорбцией ионов из р-ра на пов-сть металла, смещением электронного газа за пределы положительно заряженного ионного остова кристаллич. решетки, специфич. (некулоновской) адсорбцией ионов или полярных молекул р-рителя на электроде и др. Последние два явления приводят к тому, что Э. п. не равен нулю даже при условиях, когда заряд пов-сти металла равен нулю (см. Потенциал нулевого заряда). [c.424]

    Второй путь образования двойного слоя заключается в том, что поверхностные молекулы частиц твердой фазы диссоциируют в жидкости на ионы. Например, метакремниевая кислота НгЗЮз отдает в раствор ион водорода, в результате на поверхности остаются потенциалообразующие ионы с отрицательным зарядом. Из ионов водорода на твердой поверхности возникает адсорбционный слой, который имеет положительный заряд. Наконец, возможна специфическая адсорбция из жидкой фазы на электрически нейтральных поверхностях некоторых минералов [43]. Она обусловлена дисперсионными силами Ван-дер-Ваальса или Лондона, которые зависят от электрической поляризации атомов твердой поверхности пор ионами жидкости и поляризации самих ионов. При этом адсорбируются в первую очередь многозарядные ионы. Этот механизм возможен, например, в известняках. Вообще же примеры таких схем мало изучены. Независимо от пути образования двойной электрический слой имеет одну и ту же структуру. [c.112]

    Более удовлетворительно кинетика адсорбции описывается на основе модели, которая предполагает наличие энергетического барьера, препятствующего переходу молекул ПАВ из предповерхностного слоя на поверхность раствора. Этот барьер имеет сложную природу. В случае ионогенных ПАВ адсорбция первых порций ионов сообщает поверхности электрический заряд и приводит к образованию двойного электрического слоя. Тогда для адсорбции остальных ионов требуется преодоление сил электростатического отталкивания. На данное обстоятельство указывает, в част- [c.31]

    Образование двойного электрического слоя в результате избирательной адсорбции одного из ионов рассмотрено в гл. VI. На рис. VII, 3 в самом общем виде изображен двойной электрический слой, возникающий на кристаллах иодида серебра, находящихся в слабом растворе иодида калия . Иодид-ионы (потенцаалопре-деляющие ионы) достраивают кристаллическую решетку иодида [c.171]

    Впрочем, образотание двойного электрического слоя в результате избирательной адсорбции одного из ионов, присутствующих в дисперсионной среде, может происходить и тогда, когда достройки кристаллической решетки нет. Например, двойной электрический слой образуется на частицах парафина, диспергированного в слабом растворе щелочи, за счет избирательной адсорбции гидр-+ оксильного иона, который в данных условиях проявляет лучшую адсорбируемость, чем ион щелочного металла. Возникновение двойного электри- ческого слоя за счет ионизации мож- но проиллюстрировать образованием двойного электрического слоя на частицах водного золя двуокиси кремния. Молекулы 5102, находящиеся на поверхности таких частиц, взаимодействуют с дисперсионной средой, гидратируются и образуют кремневую кислоту, способную ионизироваться  [c.172]

    Ионообменная адсорбция избирательна, ионы одного знака могут быть (как и в случае образования двойного электрического слоя) распололсены в ряд по преимущественной способности к адсорбции. Эти ряды совпадают в основном с лиотропными рядами Гофмейстера. [c.229]

    Процесс пептизации скоагулированного вещества также протекает самопроизвольно. Основными движущими силами пептизации являются образование двойного электрического слоя,, адсорбция ионов на частицах и сольватация частиц. Вещества, способствующие переходу осадка в золь — пептизатдры — изменяют структуру двойного слоя, увеличивают толщину диффузного слоя, повышают -потенциал, увеличивают степень сольватации частиц и защищают их от слипания. Пептизация протекает с выделением энергии (ДЯ<0) и связана как с увеличением порядка в системе в результате сольватации, так и с его уменьшением вследствие раздробления вещества. [c.150]

    При соприкосновении двух электропроводящих фаз между ними возникает электрическая разность потенциалов, называемая напряжением Гальвани Дф или е, которая сама по себе не может быть измерена. Это явление связано с образованием двойного электрического слоя. Двойной электрический слой состоит из слоев диполей, которые образуются вследствие перехода электронного газа металла наружу за пределы решетки положительных ионов или вследствие адсорбции дипольных молекул из раствора, а также из зарядового двойного слоя, возникающего в результате взаимодействия двух поверхностных дипольных слоев и непосредственного межфаз-ного перехода носителей заряда [2]. Простейшее представление о строении двойного электрического слоя дал Гельмгольц, согласно представлениям которого избыточные заряды размещаются по обеим сторонам поверхности раздела фаз в двух параллельных слоях, расположенных на небольшом расстоянии. Таким образом,электрический слой можно уподобить плоскому конденсатору. Более глубокое представление о строении двойного электрического слоя дали Гуи, Чапмен, Штерн и др. [4—6]. В общем принято считать, что двойной электрический слой по своему строению представляет один или несколько параллельно включенных конденсаторов, измеряя емкость которых можно получить представление о строении и составе двойного электрического слоя. [c.97]

    Важное значение имеет образование двойного электрического слоя на границе раздела фаз в гетерогенных дисперсных системах. Возникновение двойного электрического слоя возможно двумя путями. Первый путь связан с адсорбцией на поверхности частиц твердой фазы ионов из раствора. При этом на поверхности твердой фазы адсорбируются те ионы, которые могут образовать с ионами противоположного знака (входящими в ее состав) трудно растворимые соединения либо такие ионы, которые входят в решетку, могут замещать в кристалле соответствующий ион, давая изоморфное с кристаллом соединение. Рассмотрим два примера. Гидрозоль иодистого серебра получают по реакции между AgNOs и KI. Если взять избыток AgNOs, на поверхности коллоидных частиц Agi адсорбируются ионы Ag+ и частица становится заряженной положительно. При наличии в растворе избытка KI коллоидная частица Agi приобретает отрицательный заряд вследствие адсорбции ионов I-. Таким образом, создается внутренняя обкладка двойного электрического слоя, определяющая знак заряда коллоидной частицы. Ионы К+ остаются в растворе и образуют наружную обкладку двойного слоя. [c.322]

    Образование двойного электрического слоя за счет адсорбции на твердой поверхности ионов из окружающего раствора можно проследить на многочисленных примерах получения коллоидных растворов химическими методами конденсации (см. стр. 104). Труднорастворимые вещества, например ВаЗОл, Ag I, Agi, a Oa, содержат в кристаллической решетке атомы (ионы), обладающие силами остаточных валентностей. Действие этих сил вызывает избирательное присоединение ионов из раствора. Так, кристалл Agi будет адсорбировать ионы, дающие с атомами иодистого серебра прочные, труднорастворимые, иногда изоморфные соединения. Такими адсорбированными ионами могут быть, например, I", С1 , NS", Ag " и другие — в зависимости от того, какой из них окажется в избытке в растворе. [c.85]

    Зависимость потенциала нулевого заряда от состава электролита объясняется адсорбцией ионов и полярных молекул на поверхности электрода, что приводит к образованию двойного электрического слоя и возникновению скачка потенциала внутри электролита около поверхности металла. На рис. 37 схематически показана адсорбция анионов из 1-м. растворов, содержащих На2504, КС1, КВг, К1, Кг5, на поверхности металла вблизи потенциала нулевого заряда. Притяжение катионов натрия и калия к слою адсорбированных анионов приводит к образованию двойного электрического слоя у поверхности металла и к появлению скачка потенциала. 14-1016 209 [c.209]


Смотреть главы в:

Поверхностные явления и дисперсные системы -> Адсорбция ионов. Образование двойного электрического слоя




ПОИСК





Смотрите так же термины и статьи:

Адсорбция и двойной слой

Адсорбция ионитах,

Адсорбция ионная

Адсорбция ионов

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Двойной электрический слой ионов

Двойной электрический слой образование

Ионные образование

Ионов образование

Ионы двойные

Ионы образование

Слой ионита

Электрический двойной слой ионо



© 2025 chem21.info Реклама на сайте