Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции кислотно-основного взаимодействия

    КОНСТАНТА РАВНОВЕСИЯ РЕАКЦИИ КИСЛОТНО-ОСНОВНОГО ВЗАИМОДЕЙСТВИЯ И ИЗМЕНЕНИЕ СТАНДАРТНОЙ ЭНЕРГИИ ГИББСА [c.62]

    В методах, основанных на реакциях кислотно-основного взаимодействия, кривые титрования обычно показывают зависимость pH раствора от объема добавленного титранта. Для построения кривой титрования рассчитывают значения рН 1) до точки эквивалентности (т. э.) 2) в т.э. и 3) после т. э. [c.191]


    При растворении кислот и оснований в амфипротных растворителях, т. е. растворителях, которые могут являться как донорами, так и акцепторами протонов, протекает реакция кислотно-основного взаимодействия, которая по теории Бренстеда приводит к частичной нейтрализации. Это можно описать следующими уравнениями реакций  [c.341]

    В реакциях кислотно-основного взаимодействия происходит обмен протонов, в окислительно-восстановительных — обмен электронов между веществами, участвующими в реакции. [c.158]

    Реакция осаждения протона. К небольшому количеству (несколько капель) разбавленной НС1 добавляют 1,5%-ный раствор бензоата калия до выпадения белого осадка труднорастворимой бензойной кислоты. Эта реакция может рассматриваться также как реакция кислотно-основного взаимодействия  [c.469]

    Аналогия в химико-аналитических свойствах элементов, занимающих соседние клетки в периодической системе, открывает широкие возможности для прогнозирования и разработки новых методов анализа. Было известно, например, что Мо (V) дает цветную реакцию с тиоцианатом. Можно было ожидать, что N6 (V), как соседний элемент по периодической системе, также будет давать соединение с тиоцианатом. Эксперимент оправдал эти ожидания и для ниобия был также разработан тиоцианатный метод фотометрического определения, широко используемый в настоящее время. Аналогичные примеры известны для методов определения тантала и протактиния и для многих других сочетаний элементов. Аналогия свойств, соответствующая периодическому закону, проявляется не только непосредственно в химических реакциях кислотно-основного взаимодействия, комплексообразования, осаждения и т.д., но и во многих других процессах, имеющих химико-аналитическое значение, — их экстрагируемо- [c.15]

    Сопряженные реакции кислотно-основного взаимодействия и окисления — восстановления [c.520]

    В ходе реакции кислотно-основного взаимодействия существенно изменяется электрическая проводимость раствора, поэтому во многих случаях для обнаружения точки эквивалентности используют кондуктометрические измерения. Эффективно применяют в кислотно-основных методах фотометрическое и термометрическое титрование и некоторые другие. Физико-химические способы фиксирования точки эквивалентности рассмотрены во второй части учебника. [c.211]

    Для окислительно-восстановительных реакций можно привести ряд интересных аналогий с реакциями кислотно-основного взаимодействия. [c.158]


    Наряду с общими признаками реакций обоих типов име-тотся также и существенные отличия. Так, механизм окислительно-восстановительных реакций значительно сложнее, чем /реакций кислотно-основного взаимодействия. Это проявляется в том, что реакции кислотно-основного взаимодействия протекают очень быстро, в то время как реакции окисления — восстановления во многих случаях замедленны, что часто мешает проведению. анализа. Небольшая скорость ряда окислительно-восстановительных реакций обусловлена в основном тем, что электронные переходы часто сопровождаются частичным изменением или полным разрушением молекулярной структуры участвующих в реакции частиц. Поэтому окислительно-восстановительные реакции между катионами и анионами часто проходят через стадии обмена лигандов, что, например, имеет место при окислении иодид-ионов ионами железа (П1), которое обычно описывается простым уравнением  [c.158]

    Подавляющее большинство химических реакций, которые применяются в гравиметрических, титриметрических и многих физико-химических методах анализа, протекает в растворе. Это реакция кислотно-основного взаимодействия, комплексообразования, осаждения малорастворимых соединений и т. д. Закономерности, управляющие протеканием этих реакций, являются наиболее важной составной частью теоретических основ химических (гравиметрических и титриметрических) и некоторых физико-химических методов анализа. Поэтому изложение теоретических основ аналитической химии начинается с рассмотрения процессов в растворе. Теоретические основы оптических и других физикохимических методов анализа будут рассмотрены позднее. [c.22]

    В ходе кондуктометрического титрования происходит замещение конов, находящихся в анализируемом растворе и участвующих в реакции с титрантом, ионами титранта, электропроводность которых больше или меньше электропроводности ионов анализируемого раствора. Этим обусловлено получение восходящих или нисходящих ветвей кривых кондуктометрического титрования. После точки эквивалентности титрант уже не расходуется, поэтому обычно получают восходящие прямые, угол подъема которых зависит от электропроводности титранта. Точность индикации точки эквивалентности определяется углом пересечения прямых он должен быть возможно более острым, тогда точность определения достигает 0,3%. Обычная же точность метода до 1%. Наиболее острый угол пересечения прямых получается при кислотно-основном кондуктомет-рическом титровании, так как ионы Н+ и 0Н вносят особенно большой вклад в электропроводность раствора (см. табл. Д.21). Наряду с реакциями кислотно-основного взаимодействия в кондуктометрии можно применять многие реакции осаждения и некоторые реакции комплексообразования. В принципе кондуктометрия годится и для индикации точки эквивалентности в окислительно-восстановительном титровании, если оно сопровождается изменением концентрации ионов НзО+. Но все же лучшие результаты дают в зтом случае другие методы индикации. [c.324]

    Химическая теория растворов Д. И. Менделеева рассматривает растворитель не только как среду, в которой протекает реакция, но и как непосредственного участника химического процесса. Как среда для протекания реакции растворитель обычно характеризуется диэлектрической проницаемостью. Как участника реакции кислотно-основного взаимодействия растворитель можно характеризовать его донорно-ак-цеп торны ми свойствами по отношению к протону. Конечно, эти свойства не исчерпывают своеобразия и природу растворителя, поскольку существует еще и специфическое взаимодействие. [c.34]

    Если появление первых исследований химических реакций в-неводных растворах относится к началу столетия, то бурное развитие теории и практики титрования в неводных средах наблюдается лишь в последние два десятилетия. Это находит отражение в быстро растущ,ем числе публикаций. Следует отметить, что препаративное применение растворителей предшествовало их использованию в аналитических целях оно стимулировало разработку различных теорий кислот и оснований применительно к неводным средам, расплавам солей, а также реакциям кислотно-основного взаимодействия, протекаюш.им в отсутствие растворителей. Развитие теории в свою очередь послужило основой аналитических исследований. [c.337]

    Потенциометрический анализ широко применяют для непосредственного определения активности ионов, находящихся в растворе (прямая потенциометрия — ионометрия), а также для индикации точки эквивалентности при титровании по изменению потенциала индикаторного электрода в ходе титрования (потенциометрическое титрование). При потенциометрическом титровании могут быть использованы следующие типы химических реакций, в ходе которых изменяется концентрация потенциалопределяющих ионов реакции кислотно-основного взаимодействия, реакции окисления — восстановления, реакции осаждения и комплексообразования. [c.116]


    Реакции кислотно-основного взаимодействия в растворе про- [c.40]

    Практическое применение правила произведения растворимости часто осложняется различными реакциями, в которые вступают ионы малорастворимого соединения. Анионы слабых кислот (РО4 , СОз и т. д.) и многие катионы (Ре +, А ", Си и т. д.) могут вступать в реакции кислотно-основного взаимодействия, катионы могут образовывать координационные соединения с присутствующими анионами или другими лигандами в растворе, [c.86]

    Во избежание каких-либо противоречий рекомендуется все реакции кислотно-основного взаимодействия привести к единой общей основе, которой может быть ион водорода. В окислительно-восстановительных реакциях количество реагирующего вещества удобно связать с числом электронов, принимаемых или отдаваемых веществом в данной полуреакции. Это позволяет дать следующее определение. [c.181]

    Какую особенность имеет кулонометрическое титрование с использованием реакций кислотно-основного взаимодействия Как можно в этом случае определить точку эквивалентности  [c.292]

    Примеры реакций кислотно-основного взаимодействия  [c.136]

    Особенностью большинства реакций органических соединений в отличие от неорганических является их необратимость и низкие скорости взаимодействия. Вследствие этого в органической химии ведущее место занимает химическая кинетика, теория реакционной способности и механизмов реакций, Тем не менее существуют типы химических реакций с участием органических соединений, которые являются обратимыми. Химические реакции целесообразно классифицировать на 1) реакции переноса единичных электронов с изменением окислительных состояний атомов (окислительновосстановительные реакции) 2) реакции переноса электронных пар с образованием комплексных соединений 3) реакции переноса протонов с изменением кислотных и основных свойств частиц (реакции кислотно-основного взаимодействия) 4) реакции переноса атомно-молекулярных частиц без изменения числа связей (реакции атомно-молекулярного обмена) 5) реакции переноса атомно-молекулярных частиц с изменением числа связей (реакции диссоциации, ассоциации и агрегации). Сложные химические реакции могут включать сразу несколько типов простых реакций. [c.133]

    Физически обоснованными реакциями кислотно-основного взаимодействия являются реакции переноса протонов с изменением кислотных (основных) свойств веществ. Их протекание обусловлено межмолекулярным или внутримолекулярным переносом протона. При этом протон может быть либо локализован (наиболее частый случай), либо делокализован в пределах атомно-молекулярной частицы (более редкий случай делокализованной много-центровой связи), или его состояние может быть описано их совокупностью (конденсированные состояния). [c.288]

    К числу реакций кислотно-основного взаимодействия относятся такие важные реакции, как реакции нейтрализации, гидролиза и др. [c.289]

    Тогда реакцию кислотно-основного взаимодействия в общем виде можно представить так  [c.45]

    По теории Вернера единственным классификационным признаком реакций кислотно-основного взаимодействия является образование соли. Поэтому здесь к типу кислот либо оснований [c.7]

    Пример достаточно впечатляющий для подтверждения сразу двух тезисов и об относительности систем классификации, и о решающей роли растворителя в реакциях кислотно-основного взаимодействия. [c.14]

    На рис. 17.1 приведены кривые кондуктометрического титрования для реакций кислотно-основного взаимодействия. Какая из этих кривых соответствует а) титрованию сильной кислоты сильным основанием б) титрованию слабой кислоты сильным основанием  [c.234]

    Указать индикаторные электроды и привести примеры потенциометрического титрования с использованием а) реакций кислотно-основного взаимодействия б) реакций осаждения  [c.246]

    В органической химии электрофильные и нуклеофильные реакции иногда рассматривают как реакции кислотно-основного взаимодействия, поскольку злектро-фильные и нуклеофильные реагенты можно считать, соответственно, кислотами и основаниями Льюиса. Характер реакций лигнина усложняется его амфотерной природой, так как лигнин может выступать и в роли кислоты, и в роли основания, в зависимости от среды, в которой протекает реакция (работы Зарубина). [c.442]

    Были разработаны также другие теории кислот и оснований теория сольвосистем, электронная теория Льюиса, теория Усано-вича и др. Большой вклад в развитие теории и практическое использование реакций кислотно-основного взаимодействия внесли работы А. И., Шатенштейна, Н. А. Измайлова и других отечественных ученых. [c.32]

    Реакции кислотно-основного взаимодействия [c.85]

    Сопряженная реакция кислотно-основного взаимодействия и комплексообразования. В слабокислый 0,1 М раствор соли Sb(IlI) пропускают сероводород. Оранжево-красный осадок Sb2S3 отделяют, добавляют к нему несколько миллилитров 5 М NH3 и снова пропускают HjS. При этом осадок SbjS3 растворяется. Пр"и подкислении раствора 5 М соляной кислотой осадок сульфида выпадает снова. [c.526]

    По этому определению круг веществ, называемых кислотами, значительно расширился. К кислотам стали также относить такие частицы, как Н50Г, а к основаниями — СОа, Р2О7 и т. д. Все реакции кислотно-основного взаимодействия по этой теории состоят в обратимом переносе протона от кислоты к основанию. В результате такого процесса образуется пара новых частиц, одна из которых опять способна отдавать протон, а другая его присоединять. Таким образом кислота оказывается в равновесии с сопряженным основанием, а основание — с с о-пряженной кислотой  [c.31]

    Измерения электрической проюдимости растворов широко применяют в титриметрическом анализе для определения точки эквивалентносги кондуктометрическое титрование). В методах кондуктометрического титрования измеряют электрическую проводимость раствора после добавления небольших определенных порций титранта и находят точку эквивалентности графическим методом с помощью криюй в координатах к-Кт нша- Практически в этом методе могут быть использованы такие химические реакции, в ходе которых происходит резкое изменение (обычно возрастание) электрической проводимости после точки эквивалентности (реакции кислотно-основного взаимодействия, осаждения и т. д.). [c.219]

    Тепловые эффекты реакций кислотно-основного взаимодействия, комплексообразования и других реакций экспериментально могут быть найдены или по температурному коэффициенту констант равновесия (некалори-метрический метод), или путем прямых калориметрических измерений. Хотя тепловой эффект реакции не должен зависеть от метода определения, все же нередко величины, полученные по температурному коэффициенту констант равновесия, существенно отличались от результатов калориметрических определений иногда даже по знаку. Одной из основных причин возникновения противоречий такого рода является, по-видимому, пренебрежение температурной зависимостью теплового эффекта. В практических расчетах зависимость ДЯ от Т часто не учитывают, ссылаясь на так называемый сравнительно узкий температурный интервал, внутри которого тепловой эффект принимается постоянным. Интегрируя уравнение изобары реакции при ДЯ= oпst, получаем [c.269]

    Калориметрическому измерению теплот реакций кислотно-основного взаимодействия обычно предшествует исследование равновесий и выбор оптимальных концентрационных условий проведения калориметрического опыта. Равновесия в растворах миогоосновных кислот удобно представить в виде так называемых диаграмм равновесия, показывающих относительное содержание отдельных продуктов ступенчатой диссоциации в зависимости от pH раствора. Доля каждой частицы рассчитывается по уравнениям типа (Х1.43), считая анион кислоты центральным ионом, а ионы водорода лигандам. [c.279]

    Чрезвычайно высока скорость практически всех кислотно-основных реакций реакций между ионами и 0Н , взаимодействия ионов и ОН с кислотно-основными индикаторами и т. д. В отличие от реакций кислотно-основного взаимодействия скорость окислительно-восстановитель-ных реакций и реакций комплексообразования меняется в широких хфеделах (табл. 4.1). Различия в скоростях реакций комплексообразования и окисления—восстановления объясняются многообразием механизмов этих реакций, часто отличающихся многостадийностъю, образованием большого числа промежуточных продуктов, требующих перестройки координационной сферы ионов, разрыва и образования кшогих химических связей. [c.90]

    Возбуждение электронной оболочки молекулы оказывает сильное воздействие на водородную связь. Резко возрастают скорости образования водородной связи, достигая Ю м" -л-с , и скорости ее диссоциации, достигая значений 10 с". Баланс скоростей образования и диссоциации частично или полностью протонированных оснований (что зависит от глубины протонирования — степени внедрения протона в электронную оболочку основания) определяет константу равновесия реакции кислотно-основного взаимодействия, или, другими словами, — силу кислоты в данном растворителе, выступающем в роли основания. Глубина протонирования основания при его фотовозбуждении может возрастать настолько, что слабое взаимодействие (Н-ассоциат, в котором реализуется водородная связь) перейдет в сильное (Н-ассоциат переходит в полностью протонированное основание с освобожде- [c.266]

    Функциональные группы -ОН, обладая довольно кислым атомом водорода и двумя и-электронными парами, делают молекулы спиртов и фенолов химически активными в реакциях кислотно-основного взаимодействия, комплексообразования с солями металлов. Сильное воздействие ОН-группы на алкильный (К) и арильный (Аг) остатки за счет электронных эффектов (индукционного в алкилах и итс-сЪпряжения в арилах) активизирует их в реакциях отщепления Н2О, дальнейшего окисления уже окисленного частично С з- атома или ароматического остатка, в раз1личных реакциях замещения Н- [c.419]


Смотреть страницы где упоминается термин Реакции кислотно-основного взаимодействия: [c.128]    [c.2]    [c.33]    [c.128]    [c.136]    [c.269]    [c.189]   
Смотреть главы в:

Аналитическая химия. Ч.1 -> Реакции кислотно-основного взаимодействия

Аналитическая химия Часть 1 -> Реакции кислотно-основного взаимодействия




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие кислотно-основное

Кислотно-основное

ЛИЗ кислотно основной

Реакции кислотно-основные



© 2025 chem21.info Реклама на сайте