Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо. Кобальт. Никель

    Железо, кобальт, никель. Оксиды железа (II), (ll)-(III) и (111). Гидроксиды и солн железа (II) и (III). Ферраты (III) и (VI). Комплексные соединения железа. Соли и комплексные соединения кобальта (II) и никеля (II) [c.319]

    Все данные о свойствах железа, кобальта, никеля и платиновых металлов показывают, что этим помещаемым в восьмую группу элементам никак не соответствует номер группы. В самом деле, [c.297]


    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Активационная поляризация определяет также кинетику осаждения или растворения металла. Она мала для таких металлов, как серебро, медь, цинк, но возрастает для металлов переходной группы, например железа, кобальта, никеля, хрома (см. табл. 4.1). Природа анионов электролита больше влияет на перенапряжение процессов разряда и ионизации металла, чем на реакцию выделения водорода. [c.53]

    Поиски присадок для устранения детонации в двигателях внутреннего сгорания проводятся уже более 70 лет. Наиболее эффективные антидетонаторы найдены среди органических производных свинца, олова, таллия, висмута, селена, теллура, марганца, железа, кобальта, никеля, меди, хрома и других металлов. В частности, как антидетонаторы были изучены алкилы металлов, их карбонилы, внутрикомплексные соли, соединения сэндвичевого строения и т.д. [25, 26]. [c.231]

    Присоединение хлористого водорода по двойной связи, как отмечалось выше, происходит труднее, чем присоединение бромистого и иодистого водорода. Для ускорения реакции применяют нагревание и катализаторы — соли железа, кобальта, никеля или алюминия. В некоторых случаях процесс ведут под давлением. [c.67]

    Химизм и термодинамика процесса. Содержащиеся в сырье сернистые соединения, недостаточно полно удаляемые с помощью поглотителей,должны быть переведены в сероводород. Ддя этого служит процесс гидрирования на катализаторах, соедржащих окислы железа, кобальта, никеля, меди, цинка. [c.95]


    НАДИЙ ХРОМ МАРГАНЕЦ ЖЕЛЕЗО КОБАЛЬТ НИКЕЛЬ [c.277]

    Металлы, содержащиеся на поверхности катализатора, практически не влияют на скорость выжига коксовых отложений в диффузионной области и существенно ускоряют регенерацию катализатора в кинетической области. Исследованные нами металлы по степени убывания их воздействия на скорость окисления кокса в кинетической области располагаются в следующий ряд хром> >ванадий>литий>молибден, медь, натрий>железо>кобальт, никель>бериллий, магний, кальций, стронций>калий>цезий> >свинец. [c.180]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    Реакции прямого окисления с помощью кислорода или воздуха имеют ряд отрицательных сторон, к которым в первую очередь следует отнести необходимость кислородных установок (при окислениях кислородом), разбавление продуктов реакции азотом (в случаях окисления воздухом), опасность сокрушительных взрывов и т. д. В последнее время предложены более рациональные и простые методы окисления с помощью окислов металлов, способных регенерироваться воздухом, что исключает большинство из недостатков прямых окислений. Для этой цели применяют окислы меди, титана, железа, кобальта, никеля, марганца, ванадия, часто с активирующими добавками. [c.197]

    ЖЕЛЕЗО, КОБАЛЬТ, НИКЕЛЬ [c.278]

    Вещества с особо высокой магнитной восприимчивостью (например, железо, кобальт, никель) называются ферромагнитными. Вещества проявляют ферромагнетизм только в твердом состоянии. [c.188]

    Примечание. 0,01% (вес.) в железе отвечает 224 см водорода в 100 2, или 0,55% (атомн.) ввиду близости атомных весов железа, кобальта, никеля это приблизительно распространяется и на них. [c.46]

    Антидетонационными свойствами обладают соединения свинца, олова, таллия, висмута, селена, теллура, марганца, железа, кобальта, никеля, меди, хрома и ряда других металлов. Как антидетонаторы были изучены алкилы металлов, карбонилы, вну-трикомплексные соли, соединения сэндвичевого строения [1, 2]. Эффективность соединений свинца и марганца будет рассмотрена ниже остановимся лишь на антидетонационныз свойствах соединений других металлов. [c.127]

    На конечном этапе получения кобальта и никеля оксиды (смесь Со.О и СогО, в производстве Со и N10 в производстве N1) восстанавливают з глеродом в электропечах. Выпла.рленные кобальт и никель очищают электролизом (электролиты — водные растворы Со504 или N 504 с добавками). Мировое производство кобальта составляют в год несколько десятков тысяч тонн, никеля — сотни тысяч тонн. Никель отделяют часто от других металлов в виде карбонила N (00)4. Сопутствующая никелю медь карбонила не образует, а карбонилы Со2(СО)з и Ре(СО)б сильно отличаются по давлению пара от N (00)4. Полученный восстановлением оксидов высокодисперсный продукт, содержащий N1, Со, Ре, Си и различные примеси обрабатывают СО при давлении 7—20 МПа и температуре 200°С. Образовавшийся карбонил никеля очищают рек-Таблица 3.11. Некоторые свойства железа, кобальта, никеля [c.556]

    Свойства. Компактные железо, кобальт, никель — твердые металлы, стойкие на воздухе до 400—700°С, благодаря образованию защитной оксидной пленки. Наиболее стоек к действию окисляющих реагентов никель, наимение — железо. В высокодисперсном состоянии данные металлы пирофорны — самовозгораются на воздухе. Ре, Со, N1 — ферромагнетики. Некоторые свойства Ре, Со и N1 указаны в табл. 3.11. [c.557]

    Эти соотношения схематически представлены на рис. 4. На нем показаны энергии связи электронов различных подуровней (при полной достройке данного подуровня). Различия в энергии связи электронов двух соседних прдуровней одной оболочки в общем меньше, чем различия в энергии связи электронов одноименных подуровней двух оболочек. Однако энергия связи электронов первых подуровней данной оболочки может быть большей, чем энергия электронов последних подуровней предыдущей оболочки. Так, первая электронная пара четвертой оболочки (45 Электроны) обладает несколько большей энергией связи, чем электроны последнего подуровня третьей оболочки (За -электроны). Поэтому 19-й электрон атома калия и 20-й электрон атома кальция не начинают постройки Зс/-подуровня, а занимают 45-положепие, так как это соответствует большей энергии связи их в атоме. Таким образом, последовательность в образовании электронами оболочек атома в этом случае нарушается. И только когда наиболее выгодный в энергетическом отношении 5-подуровень четвертой оболочки достроен, следующие электроны в атомах скандия, титана, ванадия, хрома, марганца, железа, кобальта, никеля и меди окончательно достраивают третью оболочку. [c.41]


    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]

    Можно ввести представление о различной степени однотипности в зависимости от степени подобия этих элементов. Так, карбонаты кальция, стронция и бария более однотипны между собой, а карбонаты магния и, в особенности, бериллия сильнее отличаются от них. Еще менее однотипны с ними карбонаты металлов побочной подгруппы — цинка, кадмия и ртути, а тем более других элементов в двухвалентном состоянии (карбонаты марганца, железа, кобальта, никеля). Впрочем, в некоторых частных случаях (по-видимому, при близких ионных радиусах) наблюдается достаточно хорошая однотипность по некоторым свойствам, например между Мд28104 и Ре25104. [c.91]

    К потенциальным электролитам относятся также многие кислотообразующие нолусоли. Такие соединения, например, как гали-ды алюминия, хрома, марганца, железа, кобальта, никеля, меди, свинца и т. п., в безводном состоянии не являются электролитами— при расплавлении они не диссоциируют (или диссоциируют и незначительной мере) при растворении же этих полусолейв воле происходят реакции, приводящие к образовагшю нонов. Так, например, происходит ионизация безводных дихлоридов меди и кобальта при растворении их в воде  [c.172]

    Железо, кобальт и никель занимают в четвертом периоде системы элементов особое место. Эти элементы не имеют элементов-аналогов в малых периодах системы Д. И. Менделеева, а вместе со своими аналогами в пятом (рутений, родий н палладий) и шестом (осмий, иридий н платима) периодах располагаются в середине больших периодов, составляя УП1В-подгруппу. Элементы четвертого периода — железо, кобальт, никель — отличаются от элементов пятого и шестого периодов тем, что в их атомах нет свободного /-подуровня. В связи с этим, несмотря на ряд общих свойств, в химическом отношении железо, кобальт и никель отличаются от остальных элементов /П1В-подгруппы (платиновых металлов). [c.297]

    Гомогенное взаимодействие окиси углерода с водяным паром нри температурах ниже 1000° С протекает очень медленно. Для увеличения скорости реакции в промышленности применяют катализаторы на основе окиси железа, кобальта, никеля, меди и других металлов. Наряду с основным (катализирующим) окислом в состав катализатора входят нромотирующие добавки в виде окислов хрома, магния, алюминия, цинка, свинца, калия, натрия и т. д. [c.191]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Исследования по гидрообессериванию деасфальтированного гудрона проведены на катализаторе, характеризующемся ш1Ч)окопористой структурой и обладающем значительной металлоемкостью (КГДО) С8 . В качестве контакта для предварительного удаления металлов изучались системы, состоящие из железа,кобальта, никеля или молибдена, нанееенных методом пропитки соответствующими солями на носитель -окись алюминия - также характеризующийся пшрокопористой структурой. Характеристика испытуемых образцов цредставлена в табл.1, характеристика сырья для испытаний - в табл.2. [c.75]

    Сочетание процессов деасфальтизации и каталитической деметалли-зации полученного деасфальтизата позволяет цри минимальных затратах получить максимальный выход целевого продукта с требуемыми свойствами. Исследованием в качестве контактов деметаллизации систем. состоящих иэ железа, кобальта, никеля или молибдена, нанесенных на окись алшиния, показано преимущество контакта, представляющего собой специально подготовленную окись алшиния с нанесенный молибденом. Библ.9. табл.4. [c.130]

    Как правило, для гидрогенизационного обессеривания нефтяных фракций можно применять любые сероустойчивые гидрирующие катализаторы. Активными компонентами катализаторов служат соединения ванадия, хрома, железа, кобальта, никеля, молибдена и вольфрама их наносят на окись алюминия, силикагель, алюмосиликат, боксит и др. В промышленных процессах гидро-обессеривания наиболее распространены кобальтмолибденовые, никельмолибденовые и никельвольфрамовые катализаторы. [c.78]

    При керамической сварке тепловую энергию получают при сгорании в струе кислорода металлических порошков, например, алюминия, кремния и др. Торкрет-массу, содержащую такой топливный компонент и огнеупорный материал, например, динасовый мертель, подают в среде кислорода на нагретую до 800—1000 С (не менее) кладку. Большое количество тепла, выделяющегося при сгорании металлов в кислороде, расходуется на расплавление огнеупорных компонентов торкрет-массы. Условие высокой температуры кладки обуславливается необходимостью инициирования и поддержания горения. Метод ремонта с помошью экзотермических торкрет-масс состоит в нанесении на горячую кладку печи водной суспензии или сухих порошков, включающих термическую смесь, то есть алюминий или кремний и оксиды металлов, например, железа, кобальта, никеля, марганца, огнеупорный порошок. Нагреваясь от кладки, алюминий (кремний) вступает в <симическую реакцию с твердыми оксидами. Выделяющаяся при этом тепловая энергия расходуется на расплавление материала и формирование на дефектах защитной огнеупорной наплавки. Способ не нуждается в использовании традиционных энергоносителей — топливного газа или кислорода, так как процесс теплогенерации происходит в твердой фазе. Есть способы, комбинирующие факельное торкретирование и экзотермические добавки. [c.203]

    В практике гидроэлектрометаллургии чаще всего используют образование гидроо1кисей, данные по их растворимости приведены в табл. 83 (гл. VII). Большинство гидроокисей обладает довольно значительной растворимостью. Например, насыщенный раствор Fe (ОН) 2 содержит 0,0002 г/л Fe +. Поэтому для удаления железа, кобальта, никеля применяют осаждение в виде трехвалентных гидроокисей. При выделении Ре(ОН)з конечная концентрация железа в растворе будет теоретически равна 1 10 г/л. [c.573]


Смотреть страницы где упоминается термин Железо. Кобальт. Никель: [c.310]    [c.237]    [c.122]    [c.221]    [c.298]    [c.298]    [c.300]    [c.165]    [c.34]    [c.74]    [c.71]    [c.190]    [c.17]    [c.637]    [c.101]    [c.218]   
Смотреть главы в:

Руководство к лекционным демонстрациям по неорганической химии -> Железо. Кобальт. Никель

Лабораторный практикум по общей химии (полумикрометод) -> Железо. Кобальт. Никель

Лабораторный практикум по общей химии Издание 2 -> Железо. Кобальт. Никель

Практикум по неорганической химии -> Железо. Кобальт. Никель

Практикум по неорганической химии -> Железо. Кобальт. Никель

Практикум по неорганической химии Издание 2 -> Железо. Кобальт. Никель

Руководство к лабораторным работам по неорганической химии -> Железо. Кобальт. Никель




ПОИСК





Смотрите так же термины и статьи:

Бондарь, В. В. Гринина. Электроосаждение двойных сплавов кобальта, железа и никеля с другими элементами

Боргидриды железа, кобальта и никеля

Ванадий, минералы железа, цинка, никеля, кобальта

Василенко, 3. М. Мельниченко, Э. М. Натансон Электронномикроскопическое исследование высокодисперсных порошков сплава железо — кобальт — никель

ГРУППА СУЛЬФИДА АММОНИЯ Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий, алюминий, бериллий, хром, торий, скандий, редкоземельные металлы, цирконий, титан, ниобий и тантал Элементы, образующие при действии (NH4)aS растворимые в кислотах сульфиды Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий Железо

Гидрирующие агенты железо, кобальт, никель, франций ацетилацетонаты

Гидроэлектрометаллургия никеля, кобальта и железа

Глава тринадцатая. Железо, кобальт и никель Железо

Жаропрочный сплав на основе железа, кобальта и никеля — Ковар

Железо фотометрическое определение, одновременное с кобальтом и никеле

Железо, кобальт, никель (VII IB группа)

Железо, кобальт, никель и их соединения

Железо, кобальт, никель и платиновые металлы

Железо, кобальт, никель. Оксиды железа (II), (II)-(III) и (III). Гидроксиды и соли железа (II) и (III). Ферраты (III) и (VI). Комплексные соединения железа. Соли и комплексные соединения кобальта (II) и никеля

Железо, никель, сплавы на их основе, кобальт

Использование железа, кобальта и никеля в технике

Константы равновесия реакций восстановления окисей железа, кобальта и никеля водородом и окисью углерода

Магнитные свойства железа, кобальта и никеля

Марганец, железо, кобальт и никель

Мельниченко, В. П. Василенко, Э. М. Натансон. Образование на катоде высокодисперсных тройных сплавов железо — ь кобальт — никель

Нахождение в природе и получение железа, кобальта и никеля

Никель, как катализатор железа и кобальта

Нитрилы железа, кобальта, никеля

Общие понятия о силикатах бария, марганца, железа, меди, никеля, кобальта, свинца и цинка

Окиси железа, кобальта и никеля

Окислы железа, кобальта и никеля

Оксиды и гидроксиды железа, кобальта и никеля

Олово абсолютная примеси алюминия, бора, галлия, железа, золота, индия, кобальта, меди, никеля, свинца, серебра, сурьмы

Определение алюминия, железа, меди, кадмия, цинка, кобальта, никеля, титана, хрома, марганца в сточных водах из одной пробы методом полярографии и фотоэлектроколориметрии . Определение натрия в природных водах методом полярографии

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе

Определение железа, меди, кобальта, никеля, кадмия, хрома и ва- Ж надия в почвах

Определение железа, никеля и кобальта в химических реактивах Иванов, Д. М. Михельсон

Определение кобальта в присутствии больших количеств железа, хрома и малых количеств меди, марганца и никеля

Определение никеля, кобальта, хрома (Сгв и Сг3), железа, марганца, титана, молибдена, меди и вольфрама

Определение ступенчатых констант устойчивости в случае образования триэтилендиамин- ионов марганца (И), железа (И), кобальта (II) и никеля

Определение тяжелых металлов (железа, алюминия, марганца, никеля, кобальта, олова, титана, висмута, молибдена, меди, ванадия, свинца и серебра)

Определение хрома, никеля, кобальта, железа, марганца, алюминия, молибдена, меди, титана и вольфрама

Осаждение железа, алюминия и хрома и отделение их от марганца, никеля, кобальта и цинка

Отделение железа((1И) от меди(Н), кобальта(Н) и никеля (И)

Отделение железа, алюминия и хрома от марганца, кобальта и никеля

Отделение железа, алюминия, хрома, урана, циркония и титана от марганца, кобальта, никеля, цинка, кальция, стронция, бария, магния и щелочных металлов

Отделение железа, алюминия, хрома, циркония и титана от марганца, кобальта, никеля, цинка, кальция, стронция, бария, магния и щелочей

Покрытия никелем, кобальтом, железом и их сплавами

Применение железа, кобальта и никеля

Прямое определение железа, кадмия, кальция, кобальта, магния, марганца, меди, никеля, свинца, серебра, хрома и цинка

РАБОТА 16. Марганец, железо, кобальт, никель

Разряд ионов железа, никеля, кобальт

Реакции комплексообразования железа, кобальта и никеля

Свойства железа, кобальта и никеля

Соединения железа (VI) — ферраты . Получение сульфидов кобальта и никеля

Соли железа, кобальта и никеля

Спектральное и химико-спектральное определение алюминия, висмута, железа, индия, кадмия, кобальта, магния, марганца, меди, никеля, свинца и хрома в галлии и хлориде галлия

Спектральное определение алюминия, бора, висмута, галлия, железа, индия, кобальта, кремния, марганца, меди, мышьяка, никеля, олова, свинца, серебра и цинка в сурьме

Спектральное определение алюминия, кальция, кобальта, хрома, меди, железа, магния, марганца, никеля, титана и ванадия в двуокиси кремния и кварце

Спектрографическое определение железа, алюминия, марганца, меди, никеля, кобальта, олова, титана, висмута, молибдена, ванадия, свинца и серебра

Таллий, минералы отделение от галлия, индия, алюминия, железа, хрома, цинка, кадмия, никеля, кобальта, селена

Тема 31. Железо, кобальт и никель

Титан, минералы железа, цинка, никеля, кобальта

Титрование этилендиамином растворов солей марганца (II), железа (И), кобальта (II) и никеля, содержащих соляную кислоту

Топливо нагар, предотвращение железо ацетилацетонат кобальт ацетилацетонат медь хелаты никель

Третья аналитическая группа катионов. Алюминий, хром, железо, марганец, цинк, ванадий, церий, никель, кобальт, бериллий, титан, цирконий, торий, уран

Уран определение в железа, кобальта, никеля, цинка

Уран определение железа, титана, кобальта, никеля

Физические и химические свойства карбонилов и гидрокарбонилов железа, кобальта и никеля

Фотометрическое определение меди, кобальта, никеля, железа и марганца в сульфидах и селенидах кадмия и цинка

Фториды железа, кобальта и никеля

Химико-спектральное определение железа, меди, никеля, кадмия, свинца, цинка, висмута, серебра и кобальта в фосфоре

Хроматограммы гидроокисей железа (III), никеля, меди, кобальта, марганца

Цирконий отделение железа, цинка, никеля, кобальта, марганца

Электролиз в металлургии металлов группы железа (никель, кобальт, железо)

Электролиз в металлургии никеля, кобальта и железа

Электролитическое осаждение никеля, кобальта, железа

Электронные структуры и степени окисления железа, кобальта, никеля и платиновых металлов

Электроосаждение железа, кобальта, никеля

свинец серебро сплав железа с кремнием сплавы железа никелем сплавы кобальта сплавы

чугун кремнием железа с никелем кобальта



© 2025 chem21.info Реклама на сайте