Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель, как катализатор железа и кобальта

    Под атмосферным давлением олефины можно гидрировать при температурах около 00—550° С. За этим пределом преобладает дегидрирование. Применение давления и катализатора дает возможность провести процесс гидрирования при комнатной температуре и даже ниже те же условия требуются для доведения до минимума дегидрирования при более высоких температурах. Гидрирование особенно усиливается при повышении давления. Довольно широкий ряд металлов относится к активным катализаторам гидрирования. Наиболее интересны никель, палладий, платина, кобальт, железо, активированная никелем медь. Первые три из них, будучи приготовлены специальным образом, активны при комнатной температуре и атмосферном давлении. Металлические катализаторы легко отравляются серо -мышьяксодержащими [c.89]


    Для получения катализаторов ионно-координационной полимеризации используют такие переходные металлы, как титан, ванадий, хром, марганец, железо, кобальт, никель, цирконий, ниобий, молибден, палладий, индий, олово, вольфрам. Для образования комплексов в основном с галогенидами этих металлов используют алкилпроизводные алюминия, цинка, магния, лития, бериллия. На этих катализаторах удалось осуществить промышленный синтез полипропилена, тогда как другие каталитические системы оказались неэффективными. Такие катализаторы широко используются для получения других полимеров (например, полиэтилена) строго стереорегулярной структуры, особенно цис-1,4-полибутадиена и цис-1,4-полиизопрена — синтетических каучуков высокого качества, полноценно заменяющих натуральный каучук, [c.48]

    Обычно для осуш ествления гидрогенизационного обессеривания в качестве катализаторов применяются сульфиды и окислы металлов (никеля, вольфрама, железа, кобальта, молибдена, ванадия, хрома и др.), отложенные на различных носителях или без носителей 1164]. [c.394]

    Присоединение хлористого водорода по двойной связи, как отмечалось выше, происходит труднее, чем присоединение бромистого и иодистого водорода. Для ускорения реакции применяют нагревание и катализаторы — соли железа, кобальта, никеля или алюминия. В некоторых случаях процесс ведут под давлением. [c.67]

    Спиртовое брожение сахара, катализаторы—железо, кобальт, никель и марганец Никель обладает ббльшей способностью отравляться, чем железо, кобальт и марганец в 5,5 раза больше сахара ферментируется в присутствии иона трехвалентного железа, чем в присутствии иона двухвалентного железа 246 [c.412]

    В промышленности часто используются катализаторы на основе никеля, а также кобальта и железа в сочетании с медью, цинком, хромом и другими металлами. [c.235]

    Наиболее старая карбидная теория исходит из того, что входящие в состав катализаторов железо, кобальт, никель обладают свойством образовывать в условиях синтеза карбиды, т. е. соединения, состоящие из металла катализатора и углерода. При взаимодействии с водородом при температурах ниже 350° карбиды образуют метиленовые радикалы СНз, полимеризация которых с последующим присоединением водорода (т. е. гидрированием) приводит к получению углеводородов. [c.205]

    Химизм и термодинамика процесса. Содержащиеся в сырье сернистые соединения, недостаточно полно удаляемые с помощью поглотителей,должны быть переведены в сероводород. Ддя этого служит процесс гидрирования на катализаторах, соедржащих окислы железа, кобальта, никеля, меди, цинка. [c.95]


    Смесь (26) и (27) можно дегидрировать при 500—650 °С в присутствии водяного пара, используя в качестве катализатора СаО. Степень превращения составляет 30%, выход целевого продукта— около 80%. В качестве катализаторов могут быть также использованы никель, медь, железо, кобальт, хром или платина, нанесенные на оксиды кальция, магния, меди, стронция, цинка, на кизельгур или силикагель. Выход 1-нафтола при этом находится в пределах 83—91% [31]. Хорошие результаты достигнуты при работе на катализаторе, состоящем из металлического никеля и меди, оксидов хрома и сульфатов щелочных металлов в смеси с нитратами и нитритами. Особенность этого катализатора заключается в том, что он вызывает одновременное дегидрирование (27) в (26) и превращение последнего в (58). Оптимальная температура процесса 360—390 °С, выход 1-нафтола 88% [41]. [c.506]

    При замене в контакте закись никеля — алюмосиликат никеля на железо, кобальт или медь получаются катализаторы, неактивные в реакции полимеризации этилена. [c.651]

    Металлы, содержащиеся на поверхности катализатора, практически не влияют на скорость выжига коксовых отложений в диффузионной области и существенно ускоряют регенерацию катализатора в кинетической области. Исследованные нами металлы по степени убывания их воздействия на скорость окисления кокса в кинетической области располагаются в следующий ряд хром> >ванадий>литий>молибден, медь, натрий>железо>кобальт, никель>бериллий, магний, кальций, стронций>калий>цезий> >свинец. [c.180]

    Хорошо известно, что металлическое железо, кобальт и никель способны катализировать полное разложение углеводородов до кокса и водорода. Рассмотренные выше катализаторы содержат соединения железа и никеля, и поэтому режим процесса должен исключить условия, при которых возможно восстановление этих компонентов до каталитически активных металлов. Такому восстановлению препятствует использование избытка водяного пара или образование водяным паром соединений с другими компонентами катализатора. В результате попытка применить эти катализаторы для реакций с углеводородами без водяного пара неизбежно приведет к повышенному коксообразованию. [c.76]

    Перельман Ф. М. Применение метода физико-химического анализа к изучению сложных катализаторов (на примере гидроокисей кобальта, никеля, меди, железа и марганца) // Проблемы кинетики и катализа. Т. 5,- М.-Л. АН СССР, 1948. [c.152]

    Морфология образующегося ВПУ зависит от вида катализатора железо обусловливает образование волокон без внутренней полости, никель — трубчатой формы, кобальт позволяет получить оба вида ВПУ. Возможно использование смеси катализаторов. При графитации базовые плоскости в этих волокнах располагаются предпочтительно перпендикулярно оси волокна. [c.460]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    По механизму действия все катализаторы Ота делит на три группы [132]. К первой группе относятся нафтенаты- натрия, магния, бария, двухвалентной ртути и алюминия. Они вызывают незначительное разложение гидроиероксидов и не препятствуют их накоплению. Окисление в присутствии этих катализаторов обычно прекращается на неглубоких стадиях прев раще-ния исходного углеводорода при максимальной скорости (мол.) в 1 ч. Ко второй группе отнесены нафтенаты свинца, серебра, цинка, марганца, никеля, трехвалентното железа, кобальта, хрома. Соли металлов второй группы интенсивно разлагают гидропероксиды с образованием свободных радикалов при этом максимальная скорость окисления достигает 3—4% (мол.) в 1 ч. Нафтенаты калия, ванадия и двухвалентной меди, отнесенные к третьей группе, вызывают интенсивное разложение гидропероксидов и ингибируют 0 кисление  [c.37]

    Не менее важной для системы аммиак - металл оказывается способность аммиака реагировать с растворенным металлом. И хотя в отсутствие катализаторов процесс не имеет практического значения, он легко ускоряется переходными металлами, такими как железо, кобальт, никель, а также ультрафиолетовым светом. Эта каталитическая реакция представляет собой удобный метод получения амидов различных металлов, которые сами по себе широко используются в органическом синтезе как сильные основания  [c.169]


    При окислительно-восстановительном (электронном) катализе катализаторами служат проводники электрического тока — металлы и полупроводники (главным образом оксиды металлов). Опытные данные показывают, что наибольшей каталитической активностью и разнообразием каталитического действия обладают металлы больших периодов системы элементов Д. И. Менделеева. Это в основном металлы I, Ч, УП и УП1 групп медь, серебро, хром, молибден, вольфрам, уран, железо, кобальт, никель, платина, палладий и др. Все эти металлы являются переходными элементами с незавершенной -оболочкой и обладают рядом свойств, [c.224]

    Действие ядов специфично для данного катализатора и соответствующей каталитической реакции. Наиболее чувствительны к ядам металлические катализаторы, особенно благородные металлы. Ядами для платинового катализатора, широко применяемого в процессах окисления, являются сероводород и другие сернистые соединения, соединения мышьяка, фосфористый водород, ионы металлов РЬ2+, Си " , 5п2+, Ре + и др. К ядам для металлических катализаторов гидрирования (железо, кобальт, никель, палладий, [c.232]

    Окисление кристаллического сернистокислого аммония кислородом и воздухом при употреблении воздуха та же степень окисления достигается в пять раз медленнее, чем с кислородом Нитраты никеля, марганца, железа, кобальта и меди действие катализатора усиливается с повышением давления кислорода ЗОбЗ [c.174]

    Для установления концентраций ванадия, никеля, меди, железа, кобальта в нефти, газойле, мазуте, коксе и катализаторах крекинга спектрофотометрическим методом использованы вари-аминовая синь и фосфовольфрамат, диметилглиоксим, диэтилди-тиокарбамат свинца, а, а -дипириднл, нитрозо-К-соль соответственно [95]. Изучению влияния сопутствующих элементов, особенно никеля и железа, при определении ванадия фосфорно-вольфраматным методом посвящена работа [96], авторы кого-рой советуют предварительное удаление этих элементов. [c.43]

    Катализаторы первой группы весьма разнообразны по составу. Они содержат многие элементы, чаще всего никель, медь, железо, кобальт, марганец. Описана большая группа катализаторов на основе никеля4°>5 -б5 в виде металла, окисла или сульфида. Известны также железохромовые, кобальтовые, вольфрамовые, кобальтмолибденовые катализаторы . бз, б5-бэ Активным компонентом катализаторов гидрирования окиси азота и ацетилена может быть также медь . Наибольшей активностью обладают цинкхром-медные катализаторы , которые могут применяться для очистки как выхлопных газов двигателей внутреннего сгорания, так и газа для синтеза аммиака. [c.342]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]

    Однако уже давно было замечено, что скорость электроосаждения, а также электрорастворения металлов группы железа зависит от pH раствора и присутствия в нем примесей. Р. X. Бурштейн, Б. Н. Кабанов и А. Н. Фрумкин (1947) высказали предположение о непосредственном участии ионов 0Н в кинетике этих процессов. По их мнению, ионы 0Н играют роль своеобразных катализаторов. Механизм реакций катодного осаждения и анодного растворения железа, кобальта и никеля с образованием промежуточных частиц типа РеОН, РеОН+ или Ре-Ре0Н+ рассматривался затем Хейслером, Бокрисом, Фишером и Лоренцом и многими другими авторами. Было предложено несколько схем, объясняющих такие экспериментальные данные, как характер зависимости скорости реакции от pH, небольшой наклон тгфелевской прямой в чистых растворах серной кислоты, его повыщение при переходе к растворам соляной кислоты и при введении добавок поверхностно-активных веществ и т. д. В качестве иллюстрации можно привести схему Бокриса [c.473]

    Исследование влияния промоторов на активность алюмомолибдено-вых катализаторов, вьшолненное на реакхщи гидрообессеривания тио фена при 300 °С, атомном отношении металл молибден = 0,5, показало, что [83] активность катализатора снижается в последовательности никель - 63,5% кобальт - 51,5% палладий - 18,8% платина - 16,7% алюминий -16,5% цинк - 15,8% , хром - 14,4% титан - 14,1% вольфрам - 13,0% рутений - 11,0% ванадий - 10,3% медь - 8,6% железо — 8,4% серебро — 83% свинец — 7,5% сурьма — 5,6% без металла - 14,7%. Оптимальное сочетание этих металлов определяет наивысшую активность системы. [c.101]

    Как видно из приведенных выше экспериментальных данных, путем подбора соответствующих катализаторов можно синтезировать полидиены с любой микроструктурой. В первую очередь, микроструктура полимеров определяется природой переходного металла катализатора. Как правило, соединения металлов VIII группы (кобальта, никеля, родия, железа), а также титана и ванадия являются более подходящими для синтеза 1,4-полибутадиенов комплексы металлов V и VI групп (хрома, молибдена, вольфрама, ниобия) и палладия дают полимеры с боковыми винильными звеньями. В то же время стереоселективность катализаторов может быть существенно изменена путем введения в состав каталитических комплексов различных лигандов. [c.105]

    Для улучшения сгорания могут быть использованы также катализаторы горения, представляюпцие собой главным образом органические соединения металлов — меди, железа, кобальта, хрома, никеля или марганца [74]. [c.314]

    Гомогенное взаимодействие окиси углерода с водяным паром нри температурах ниже 1000° С протекает очень медленно. Для увеличения скорости реакции в промышленности применяют катализаторы на основе окиси железа, кобальта, никеля, меди и других металлов. Наряду с основным (катализирующим) окислом в состав катализатора входят нромотирующие добавки в виде окислов хрома, магния, алюминия, цинка, свинца, калия, натрия и т. д. [c.191]

    Исследования по гидрообессериванию деасфальтированного гудрона проведены на катализаторе, характеризующемся ш1Ч)окопористой структурой и обладающем значительной металлоемкостью (КГДО) С8 . В качестве контакта для предварительного удаления металлов изучались системы, состоящие из железа,кобальта, никеля или молибдена, нанееенных методом пропитки соответствующими солями на носитель -окись алюминия - также характеризующийся пшрокопористой структурой. Характеристика испытуемых образцов цредставлена в табл.1, характеристика сырья для испытаний - в табл.2. [c.75]

    Как правило, для гидрогенизационного обессеривания нефтяных фракций можно применять любые сероустойчивые гидрирующие катализаторы. Активными компонентами катализаторов служат соединения ванадия, хрома, железа, кобальта, никеля, молибдена и вольфрама их наносят на окись алюминия, силикагель, алюмосиликат, боксит и др. В промышленных процессах гидро-обессеривания наиболее распространены кобальтмолибденовые, никельмолибденовые и никельвольфрамовые катализаторы. [c.78]

    Группа 8. Железо, кобальт и никель сильно катализируйт реакцию образования углерода и в(.1дорода. Никель является болеё эффективным катализатором, чем железо. [c.231]

    В качестве катализаторов для гидрогенизационных процессов переработки сернистых нефтепродуктов наиболее отвечающими указанным требованиям являются оксиды и сульфиды элементов VI группы Периодической системы — хрома, молибдена, вольфрама. Их применяют на носителях и без них (например, сернистый вольфрам). Кроме того, широко используют более сложные композиции, включающие элементы VI и VIII групп Периодической системы, — хроматы и хромиты никеля, кобальта, железа молибдаты кобальта, никеля и железа вольфраматы никеля, кобальта, железа или же их соответствующие сульфопроизвод-ные[136, 137, 144 . [c.249]

    В литературе, особенно в патентной, указывается, что катализаторами оксосинтеза, кроме кобальта, служат также никель и железо. Железо катализирует реакцию присоединения менее активно, чем кобальт, даже при. повышении температуры до 180°. При пентакарбониле железа, как и при кобальткарбониле в растворенной форме, синтез альдегидов якобы протекает при тех же температурах и с теми же выходами, однако при более низких давлениях. [c.332]

    Как правило, элементы групп V (азот, фосфор, мышьяк, сурьма, висмут) и VI (кислород, сера, селен, теллур) являются каталитическими ядами для обладающих гидрирующей активностью металлов VIII группы (железо, кобальт, никель, платина, палладий). Каталитические яды этого типа блокируют активные центры катализатора в результате прочной адсорбции или химического взаимодействия с его поверхностью. В некоторых случаях регенерация катализатора достигается в результате окисления каталитических [c.141]

    Цеолиты являются хорошими катионообменниками, что дает возможность вводить в их состав катионы самых различных металлов, в том числе и переходных, обладающих, как известно, высокой каталитической активностью в реакциях окислительно-восстановительного типа. Это направление катализа на цеолитах, а именно применение цеолитов, содержащих ионы и атомы переходных металлов, в качестве катализаторов окислительно-восстановительных реакций, начало развиваться в конце б0-х - начале 70-х годов. Рогинский и соавт. [22] первыми показали, чго цеолиты, содержащие ионы меди, хрома, железа, кобальта, марганца или никеля, проявляют высокую активность в окислении водорода,оксида углерода, этилена и аммиака. В последующие годы зто направление катализа на цеолитах интенсивно развивалось как у нас в стране, так и за рубежом, в результате чего были достигнуты определенные успехи. Однако следует отметить, что окислите-льно-восстановительные реакции, в отличие от реакций кислотночкновного типа, на цеолитных катализаторах исследованы в меньшей степени. Следствием этого, по-видимому, является отсутствие внедренных в промьпилен-ность цеолитных катализаторов для данного типа процессов. Поэтому не все возможности здесь еще исчерпаны и исследования в данной области являются актуальными и перспективными. [c.6]


Смотреть страницы где упоминается термин Никель, как катализатор железа и кобальта: [c.208]    [c.7]    [c.243]    [c.214]    [c.218]    [c.165]    [c.71]    [c.190]    [c.156]    [c.293]    [c.294]    [c.149]    [c.414]    [c.489]   
Ионообменная технология (1959) -- [ c.303 , c.428 ]

Ионообменная технология (1959) -- [ c.303 , c.428 ]




ПОИСК





Смотрите так же термины и статьи:

Железо. Кобальт. Никель

Катализаторы кобальта

Никель катализатор

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе



© 2025 chem21.info Реклама на сайте