Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Две концепции химической связи

    Для лучшего соответствия опытным данным необходимо ввести допущения об участии в химической связи атомов в возбужденном состоянии и о гибридизации атомных орбиталей. Изложенная здесь концепция метода валентных связей обладает определенной. стройностью и наглядностью. [c.57]

    ХИМИЧЕСКАЯ СВЯЗЬ 1. Две концепции химической связи [c.320]


    Такой тетраэдрической направленности всех четырех одинаковых (по прочности и длине) ковалентных сг-связей атома углерода с другими атомами отвечает sp -гибридизация его валентных орбиталей (см. разд. 4.5.6 и рис. 29.2). Данная геометрия следует и из концепции отталкивания электронных пар валентной оболочки углерода, когда четыре связывающих электронные пары стремятся удалиться, как можно дальше друг от друга (см. разд. 4.5.5). Химическая связь в таких соединениях углерода в значительной мере локализована между парами атомов и двухэлектронна. В этой связи предполагается, что коллективные свойства молекулы, т. е. свойства, определяемые движением сразу всех электронов, будут аддитивными. Экспериментальные данные во многих случаях подтверждают это. В молекулах с тетраэдрическими связями атомов углерода длины химических связей и их прочность для одной и гой же пары атомов приблизительно постоянны. [c.552]

    Ранте концепции химической связи [c.11]

    Ранние концепции химической связи 13 [c.13]

    Для сохранения классической концепции химической связи многоатомные молекулярные волновые функции часто пишутся в терминах двухцентровых молекулярных орбиталей. Однако это почти всегда приводит к некоторой потере точности. [c.57]

    На примере молекулы диборана мы познакомились с концепцией трехцентровых орбиталей, представляющих собой развитие классических представлений, в которых химические связи являются двухцентровыми. Делокализация электронов в пределах трех, четырех и более ядер, обусловленная волновыми свойствами электронов, играет большую роль в свойствах комплексных и ароматических соединений. [c.196]

    В заключение имеет смысл еще раз сравнить существующую и предлагаемую концепции химической связи, кинетики и катализа. [c.138]

    Среди основных составных частей современной органической химии синтез, пожалуй, является одной из тех, которые обладают долгой историей. Идеи функциональности и стереохимии, например, возникли во второй половине XIX в., а концепции химической связи и механизмов реакций в таком виде, как они известны сегодня, появились несомненно лишь в нашем веке. Синтез же был важной составной частью органической химии с самого начала ее возникновения поэтому история его развития насчитывает многие столетня. Тем не менее следует отметить, что большинство ранних синтетических работ были отрывочным и сводились в основном к выделению веществ (причем сомнительной чистоты) из природного сырья. Действительно, систематическое развитие органического синтеза относится к XIX в., хотя его начало было положено значительно раньше. [c.11]


    Концепция химической связи еще не обрела такого статута. Мы не в состоянии прямо определить эту концепцию, анализируя общую форму гамильтониана, характеризующего молекулу. Математический эквивалент эмпирической концепции химической связи основывается на анализе молекулярных волновых функций, рассчитанных для некоторых молекул. [c.378]

    Метод ВС основан на предположении, что химическая связь обеспечивается двумя электронами, движущимися в ограниченном участке электростатического поля двух ядер. Это предположение получило название концепции двухэлектронных локализованных связей. Эксперименты показывают, что многие химические связи локализованы, т. е. электронная плотность сосредоточена в межатомном пространстве и поэтому такая химическая связь почти независима от других связей. [c.101]

    В то же время любая электрохимическая реакция приводит к изменению заряда реагирующих частиц и, следовательно, вызывает перераспределение диполей растворителя, окружающих эти частицы. Такая реорганизация растворителя, как показывают теоретические расчеты, также сопровождается значительным изменением потенциальной энергии, а потому может служить основой для построения кривых потенциальной энергии, в которых путь реакции представляет собой некоторую обобщенную координату (у), характеризующую распределение диполей растворителя. По современным представлениям реорганизация растворителя является определяющим фактором в ходе элементарного акта разряда, хотя в общем случае необходимо рассматривать также энергию растяжения химических связей в реагирующих частицах. Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. точку А на рис. 79), то появляется вероятность квантовомеханического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты г/у. Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантовомеханического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень [c.186]

    Дублет электронов не исчерпывает возможного электронного механизма химической связи. Существование молекулярного иона водорода Н свидетельствует о том, что одного электрона вполне достаточно, чтобы образовать прочное соединение. С течением времени выявилась ограниченность концепции двухцентровой двухэлектронной связи и было высказано предположение о существовании многоцентровых орбит, охватывающих большую группу атомов. Методами масс-спектроскопии обнаружено существование иона Н , возникающего по реакции [c.39]

    Для описания огромного химического материала в теории химической связи возникла другая концепция, противоположная электрохимической, — теория замещения, или теория групп и радикалов. Это представление опирается на структурные формулы. [c.464]

    Термином электроотрицательность (ЭО) характеризуется способность атома в молекуле (или вообще в химической связи) к притяжению валентных электронов, а основное назначение концепции 30 за- [c.19]

    Все это и побудило нас к написанию данного учебного пособия Теория строения молекул , в котором авторы опирались на собственный опыт преподавания в Ростовском университете. Стремясь сделать пособие достаточно полным и независимым от других учебников (что удобно для изучающего), мы изложили в гл, I—4 общие вопросы теории строения атомов и молекул. Гл. 5 и 6, хотя и основаны во многом на новом материале, также традиционны для учебников по структуре молекул и химической связи. Остальная же часть книги не имеет аналогий, в ней дается подробный анализ современных расчетных методов квантовой химии и их приложений к проблемам структуры молекул и механизмов химических реакций. Особое внимание уделено концептуальной стороне современной теории строения и реакционной способности, развитию новых представлений и правил (сохранение орбитальной симметрии, концепция ароматичности, правило полярности и др.). [c.3]


    Открытие электрона как составной частицы вещества дало новый толчок электрохимическим теориям. Доказавщий существование электрона, Дж. Дж. Томсон первым в 1907 г. высказал электронную концепцию химической связи он предположил наличие в атомах неких устойчивых электронных конфигураций, которые могут достигаться путем потери или присоединения электронов. [c.105]

    Некоторые особенности реакционной способности трехчленных циклов были замечены уже давно. Среди них хорошо известное явление — способность циклопропанов легко претерпевать разрыв связи С-С путем гидрогенолиза или при действии протонных кислот или галогенов, причем в очень мягких условиях. Эти наблюдения потребовали создания новой концепции — существования в этих соединениях изогнутых связей, так назыааемых банановых орбиталей . Успешньгй синтез специально спроектированных пропелланов с малыми циклами обеспечивает дополнительные возможности для изучения необычных структурных эффектов и реакционной способности трехчленных циклов, включенных в такие максимально странныек-, но тем не менее существующие структуры. До сих пор не было выработано вполне удовлетворительного объяснения тех особенностей реакционной способности, которые мы обсуждали выше. Эта задача остается вызовом для теоретиков, а ее решение может привести к ревизии или, по меньшей мере к уточнению самой концепции химической связи. [c.444]

    Фогтом [42] рассматриваются магнетизм и химическая связь в интерметаллических фазах, обусловленная электронами, которые принадлежат многим-атомам. Эти связывающие электроны, как и электроны, обусловливающие проводимость, принадлежат всему количеству атомов в металле, а не определенной-паре находящихся по соседству атомов, как при гомеополярной валентной связи. С точки зрения этой концепции химическую связь можно оценивать числом валентных электронов, приходящихся на I атом. В то время как ряд реакций вызывается ионными реагентами (катализаторами) и поэтому их можно приписать ионизации ковалентных связей, имеется другая группа реагентов с нечетным числом валентных электронов. Квантованная энергия спина нечетного электрона сообщает атому определенный магнитный момент, который можно измерять методом Герла а и Стерна [10] он определен для водородного атома, окиси азота и азота [14]. Льюис [24] установил, что все соединения, молекулы которых содержат непарное число электронов, должны быть парамагнитны. Напротив, атомы или молекулы, содержащие четное число электронов, обычно не имеют магнитного момента, так как их электроны объединены в группы, содержащие равные количества электронов со спинами противоположных знаков. [c.569]

    Локализованные орбитали соответствуют атомным остовам, химическим связям и неподеленным парам электронов. Такое преобразование позволяет интерпретировать концепцию химической связи на основании точных аЬ initio расчетов. [c.241]

    Для каждого выбранного элемента мы привели наибольшее и наименьшее из найденных значений и среднее значение. Уже отмечалось, что процедура локализации полезна не только для количественного описания традиционных концепций химической связи и неподеленной пары, но и для изучения трансферабельных свойств элементов одноэлектронного гамильтониана, полученных в результате локализации. Следовательно, для сложных систем можно строить синтетическую матрицу Фока, используя параметры, полученные при изучении простых соединений. [c.248]

    Приложение теории молекулярных орбиталей (МО) к комплексным соединениям впервые было сделано Ван Флеком Ц]. Согласно этой теории, предполагается, что электроны движутся по молекулярным орбиталям, охватывающим все ядра системы. Молекулярные орбитали выбирают как линейные комбинации атомных орбиталей. Если данная атомная орбиталь (АО) заметно перекрывается Л11шь с одной другой АО, пара электронов дюжет рассматриваться как образующая локализованную МО, удерживающую два электрона. Это соответствует обычной концепции химической связи. [c.84]

    Здесь и далее автор чрезмерно преувеличивает роль концепции резонаи-< а, не упоминая о ее недостатках. Критический анализ теории резонанса см. Реутов О. А. Теоретические основы органической химии, изд. МГУ, 1964, стр. 94—98, а также Хюккель В, Химическая связь. Пер. с англ.—М. ИЛ, [c.162]

    Синтез схем химического превращения на основе концепции изомеризма. В основе метода лежит использование закона сохранения вещества в процессе химического превращения и предположение о том, что атомы, составляющие молекулярную структуру, можно рассматривать состоящими из ядер со стабильными внутренними электронами и валентных электронов, способных образовывать химические связи типа ионной, ковалентной и мпо-гоцентровой [12, 13]. Исходя из этих положений разработана математическая модель химических соединений и реакций, заключающаяся в следующем. [c.444]

    В конце 1970-х годов А. А. Кричко были обобщены представления о строении органического вещества угля как о самоассоциированном мультимере с трехмерной пространственной структурой [67[. В соответствии с этой концепцией органическая масса угля представляет собой набор макромолекул и олигомеров различного состава, соединенных между собой связями невалентного характера, среди которых основную роль играют алектронодонорно-акцепторные взаимодействия, включая водородные связи. Отдельные структурные блоки могут обладать разным набором участков, проявляющих электронодонорные и электроноакцепторные свойства. Относительно непрочные валентно-химические связи типа связей в эфирных и метиленовых мостиках также характерны для углей, но они находятся внутри объединенных в мультимер структурных единиц. [c.65]

    Две охарактеризованные теории химической связи развивались вместе с химией и физикой. Сторонники этих концепций вступали часто в ожесточенную полемику, которая вообще характерна для двух правильных в определенной части опыта представлений. В настоящее время очевидно, что для некоторых соединений правильно первое представление (гетерополярные молекулы), а для других второе (гомеополярные молекулы). Обе теории получили существенный импульс в своем развитии в связи с формулировкой теории атома Бора, так как могли быть сформулированы в атомистических термпь ах. [c.464]

    Теории валентности и стереохимия развивались в прошлом столетии в очень тесной связи, так что достижения одной обычно были результатом успехов другой. В 1852 г. Фрэнкленд предложил концепцию валентности и показал, что элементы при образовании соединений реагируют с определенными количествами других элементов, и эти количества теперь называют эктшвалентными. Кекуле в 1858 г. и Кольбе в 1859 г. расширили представление о валентности и постулировали, что атом углерода четырехвалентен. В 1858 г. Кекуле предположил, что атомы углерода соединяются друг с другом в неограниченном числе, образуя цепи в том же году Купер ввел концепцию валентной связи и нарисовал первые структурные формулы. Термин химическое строе-ние ввел в 1861 г. Бутлеров, который отметил важность написания простейших формул соединений, показывающих, как соединены атомы в молекулах. Он также установил, что свойства соединений определяются их молекулярным строением, п если известно строение, то можно предсказать свойства. Однако только в 1874 г. был сделан первый основной шаг к наглядному представлению молекулярного строения в трех измерениях. В этом же году Вант-Гофф и ле Бель независимо друг от друга постулировали тетраэдрическое расположение четырех связей атома углерода и таким образом дали возможность классической органической стереохимии по крайней мере. на двадцать лет опередить неорганическую стереохимию. [c.191]

    Говоря о методе валентных связей, подразумевают, с одной стороны, один из квантово-химических способов расчета электронной структуры молекулы, с другой—связанную с этим способом методику описания и анализа химических связей в системе. Согласно этой методике выделяют валентную группу атомных орбиталей (АО), охватывающую наивысшие по энергии занятые и наииизшие по энергии свободные АО. Образование химической связи рассматривают в духе концепции Льюиса за счет спаривания электронов соседних атомов по схеме А-- - В— -А В (ковалентная связь) или передачи электронной пары от донора к акцептору по схеме А +В—>А В. Таким образом, электронная пара соответствует валентному штриху в структурных формулах. [c.61]

    Мостиковая роль донорного атома в рамках упрощенных моделей химической связи, например концепции Льюиса, хорошо интерпретируется только в том случае, если этот атом имеет несколько донорных электронных пар, каждая из которых используется на образовании двуцентровой донорно-акцепторной о-связи [c.134]

    Лайнус Карл Полинг (род. 1901 г.) — выдающийся американский химик, один из немногих ученых, которому была дважды присуждена Нобелевская премия (1954 г. - по химии, 1962 г. — премия Мира). Л. Полингу (1970) была присуждена Ленинская премия за укрепление мира между народами. Один из создателей метода ВС, теории гибридизации, концепции резонанса, электроотрицательиости и др. Внес огромный вклад в создание молекулярной биологии (спиральное строение полипеп-тидной цепи, существование гемоглобина 5 и т. д.). На русский язык переведены его книги Не бывать войне , Природа химической связи , Общая химия и д]5. [c.381]


Смотреть страницы где упоминается термин Две концепции химической связи: [c.137]    [c.59]    [c.297]    [c.206]    [c.207]    [c.186]    [c.220]    [c.80]    [c.136]    [c.37]   
Смотреть главы в:

Краткий курс физической химии -> Две концепции химической связи




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте