Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурная организация белков

    Вся структурная организация белков (четвертичная, третичная, вторичная) может быть разрушена внешними воздействиями до первичной структуры полипептида - процесс денатурации. Денатурация белков происходит под действием экстремальных значений pH растворов, УФ-света, рентгеновских лучей, высоких давлений, повышенной температуры, физических воздействий (например, ультразвука). [c.273]


    В заключении о структурной организации белков следует отметить, что третичная и четвертичная структуры характерны для белков высокой биологической активности, ферментов в частности. Эти структуры позволяют молекулам формировать активные центры высокой эффективности и селективности. [c.100]

    Установленная секвенированием последовательность аминокислот может рассматриваться лишь в качестве одного из уровней структурной организации белка. Она закодирована в соответствующем гене и находится в тесной связи со вторичной и третичной структурами белка, его конформацией и биологической активностью. Образование вторичной и третичной структур [c.374]

    Том 3 СТРУКТУРНАЯ ОРГАНИЗАЦИЯ БЕЛКА [c.2]

    Книга во многом полемична. Так, в главе 18 рассматривается концепция Л.Б. Меклера о стереохимическом генетическом коде. Несмотря на то что прошло много лет с его первой публикации (а за ней были и другие), идеи Л.Б. Меклера, послужившие основанием для далеко идущих выводов, не получили прямого экспериментального развития. Излагая свой взгляд на причины такого положения, автор впервые дает критический анализ упомянутой концепции. В книге также ставятся под сомнение широко распространенные представления о роли водородных связей в формировании конформаций олиго- и полипептидов, отрицаются иерархичность структурной организации белков (от первичной структуры к вторичной, супервторичной, доменам и полной пространственной структуре) и целесообразность введения понятия "расплавленная глобула" для описания переходного состояния между нативным и денатурированным состоянием глобулярных белков. Несмотря на приводимую при этом весомую аргументацию, вряд ли перечисленные выводы будут легко приняты научной общественностью. Ответственный редактор надеется, что высказанные в томе положения будут замечены коллегами и вызовут дискуссию, которая пойдет на пользу науке. [c.5]

    Присущая белкам способность к структурной самоорганизации представляет собой элементарное фундаментальное качество живой материи, обусловливающее специфические особенности биологических систем всех последующих ступеней иерархической лестницы живого Каков же механизм молекулярной структурной организации белка, этой аристотелевской энтелехии живой материи, и можно ли понять его на основе существующего уровня естественнонаучных знаний Рассмотрению этого вопроса посвящена большая часть настоящей книги [c.57]

    Исследования белка, как экспериментальные, так и теоретические, независимо от конкретных целей и используемых методов, естественным об разом подразделяются на пять фундаментальных задач, составляющих единую проблему Первые две задачи включают изучение химического и пространственного строения белковых молекул Они были рассмотрены в предшествующих томах настоящего издания [1, 2] Третья задача заключается в установлении взаимосвязи между природными аминокислотными последовательностями, нативными пространственными формами и динамическими конформационными свойствами, т е в определении молекулярной структурной организации белков Но прежде чем перейти к обсуждению этой задачи, целесообразно вновь обратиться к уже рассмотренному материалу и подвести некоторые итоги [c.59]


    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]

    Исследования механизма свертывания, отвечающие второму подходу к установлению структурной организации белка, базируются на многочисленных физических, химических и биологических методах исследования, которые дают прямую или косвенную информацию о геометрических, термодинамических и кинетических аспектах процессов денатурации и ренатурации, механизме клеточного синтеза аминокислотной последовательности и взаимодействия белковых цепей с шаперона-ми. В исследованиях этого плана, как и предшествующего, надежда возлагается на то, что в результате анализа экспериментальных данных в конечном счете удастся разработать эмпирические правила, позволяющие предсказывать по известному химическому строению белка основные этапы свертывания, в первом случае, и нативную пространственную структуру, во втором. Далее, предполагается, если эти цели будут достигнуты, то станет ясно не только как возникает физиологически активная конформация, но и почему она возникает, т.е. бу- [c.77]

    Почти все эмпирические исследования структурной организации белка базируются на гидрофобной концепции Козмана, согласно которой белковая глобула состоит из гидрофильной внешней оболочки и гидро- [c.78]

    СТРУКТУРНОЙ ОРГАНИЗАЦИИ БЕЛКА [c.88]

    Автор данной монографии впервые попытался решить задачу структурной организации белка на атомном уровне с помощью нелинейной неравновесной термодинамики [38, 39]. С этой целью были разработаны соответствующие теории и методы, перечисленные ниже и обсуждаемые в остальной части книги. [c.89]

    Физическая теория структурной организации белка, связывающая его трехмерную структуру с аминокислотными остатками последовательности, т.е. макроскопические конформационные свойства белковой цепи со свойствами ее микроскопических составляющих [41]. [c.89]

    ФИЗИЧЕСКАЯ ТЕОРИЯ СТРУКТУРНОЙ ОРГАНИЗАЦИИ БЕЛКА [c.100]

    Перебор всех возможных состояний полимерной белковой цепи и нахождение среди них глобальной конформации, вообще говоря, невозможны не только для человека с его вычислительной техникой сегодняшнего дня и сколь угодно отдаленного будущего, но и для самой природы. Во всяком случае, природа избрала для этого совершенно иной механизм сборки белка, которому, возможно, отвечает бифуркационный процесс, постулируемый термодинамической теорией, рассмотренной в предыдущем разделе. Согласно теории свертывание белковой аминокислотной последовательности обладает двойственным характером. С одной стороны, весь процесс, начиная с состояния флуктуирующего статистического клубка и до конечной трехмерной структуры, осуществляется исключительно по беспорядочно-поисковому механизму. Иначе он не мог бы быть самопроизвольным. С другой стороны, структурная организация белка является детерминированным процессом, протекающим по определенному пути со строго последовательным рядом стадий. В противном случае сборка белковой цепи не совершалась бы столь быстро и безошибочно. [c.103]

    Итак, в основу физической теории положены следующие принципы структурной организации белка 1) нативная трехмерная структура и кон- [c.105]


    Рассмотренные в этой главе методологические вопросы теоретического конформационного анализа были разработаны для исследования пространственного строения низкомолекулярных органических соединений. Что же касается нашей темы - структурной организации белков, то задача такого масштаба перед расчетным методом не ставилась, и поэтому многие важнейшие вопросы, вставшие на пути к априорному расчету нативных конформаций белковых макромолекул, остались незатронутыми. Так, даже в принципе не была обсуждена сама возможность использования классического подхода, предполагающего независимость электронного и конформационного состояний молекулы. Если считать справедливыми изложенные в этой главе бифуркационную и физическую теории структурной организации белка, то доказательство применимости механической модели к данному объекту является самой главной и прежде всего требующей ответа задачей. Однако принципиальная возможность использования полуэмпирического конформационного анализа в исследовании белков также еще не предопределяет положительного решения других вопросов. Необходима методология, специально разработанная для расчета пространственного строения белковых молекул. Верхним пределом применимости изложенного метода конформационного анализа, как показано ниже, являются лишь три- и в простейших случаях тетра- и пентапептиды. Таким образом, второй важнейший вопрос на пути к решению проблемы структурной организации белка заключается в создании специфического методологического подхода, в который существующий метод конформационного анализа вошел бы как составная часть. [c.107]

    Разработка правильной теории, доказательство применимости механической модели к природным макромолекулам и создание соответствующего метода исследования все еще не гарантируют решения структурной проблемы белков. Расчет пространственного строения беспрецедентных по своей сложности белковых молекул, исходя только из знания их химического строения, может оказаться несостоятельным по чисто физическим и математическим причинам. Воздвигаемое здание может рухнуть из-за несовершенства потенциальных функций и параметризации методов Минимизации энергии многоатомных систем по многим переменным, алгоритмов и профамм счета на ЭВМ, накопления ошибок и многих других вопросов, не предполагаемых в начале поиска решения, а возникаю-.Щих, как правило, неожиданно. Особенность рассматриваемой проблемы структурной организации белка заключается еще и в том, что все [c.107]

    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]

    В решении задачи структурной организации белков изучение взаимодействий между валентно-несвязанными атомами в свободных аминокислотных остатках представляет особый интерес. Эти взаимодействия определяют у каждого стандартного остатка его конформационную потенцию, которая при укладке белковой цепи в нативную трехмерную структуру реализуется в виде определенного конформационного состояния. Знание максимальных конформационных возможностей свободного звена полипептидной цепи является исходным в последующем изучении средних и дальних межостаточных взаимодействий, благодаря чему оно составляет основу метода структурного анализа пептидов и белков. [c.154]

    Структурной основой белков является полипептидная цепь. Геометрические параметры пептидной связи приведены на рис. 6.8, а. Все атомы пептидной связи находятся преимущественно в одной плоскости. Уровни структурной организации белков описываются аналогично другим полимерам. При жесткой пептидной связи и фиксированных геометрических параметрах конформация полипептидной цепи описывается двухгранными углами Ф, и ф, при С -атомах (рис. 6.9). Вращение вокруг амидной связи -N фактически заторможено. Пептидная связь способна к таутомерным переходам по схеме [c.341]

    Это, наверное, самая неопределенная структура. Единственное, что можно сказать о ней — то, что это комплекс из нескольких полипептидных цепочек, связанных между собой самыми различными связями как слабыми водородными и ионными, так и прочными ковалентными, включая дисульфидные, сложноэфирные и амидные. Типичным случаем четвертичной структурной организации белка является молекула гемоглобина, состоящая из четырех полипептидных цепочек, связанных между собой водородными, гидрофобными и ионными связями. Особую роль выполняют ионные связи между аспарагиновой кислотой с одной стороны, лизином и аргинином с другой стороны — они образуются только в дезок-сигемоглобине и разрываются при ок-сигенировании атома железа. В свою очередь, гемы связаны с белковыми [c.99]

    По рекомендации Лнндерстрема — Ланга были введены термины первичная, вторичная и третичная структура , характеризующие уровни структурной организации белков. Первичная структура белка дает сведения о числе и последовательности связанных друг с другом пептидной связью аминокислотных остатков. Вторичная структура описывает конформацию полипептидной цепи, возникающую при образовании водородных мостиков между карбоксильными кислородными атомами и атомами амидного азота в составе скелета молекулы. Под третичной структурой понимают трехмерную укладку полипептидной цепи, вызванную внутримолекулярным взаимодействием боковых цепей. [c.363]

    Существующие представления о принципах структурной организации белка и путях многостадийного процесса самосборки полипептидной цепи можно отнести к трем альтернативным точкам зрения. Каждой из них отвечает свой специфический набор экспериментальных и теоретических методов, свой особый подход к изучению этого уникального природного явления и своя возможность в достижении конечной цели - количественного описания механизма сборки и расчета координат атомов нативной трехмерной структуры и динамических конформационных свойств белковой молекулы по известной аминокислотной последовательности. Обсуждению современного состояния и перспектив развития трех направлений исследований структурной самоорганизации белка, условно названных эмпирическим, теоретическим (аЬ initio) и генетическим, уделено в этой книге основное внимание. [c.6]

    Решающую роль в создании количественного метода сыграли положения о гармонии всех внутриостаточных и межостаточных взаимодействий и их преобладающем энергетическом влиянии над взаимодействиями белковой цепи с молекулами и ионами окружающей среды. Одно из этих положений позволило разделить проблему структурной организации белка на три менее громоздкие и поддающиеся последовательному решению частные проблемы ближних, средних и дальних взаимодействий. В результате специально разработанной классификации пептидных структур на конформации, формы и шейпы стало возможным получение достоверных количественных данных о конфор-мационных состояниях целых наборов структурных вариантов различных таксономических групп, ограничившись детальным анализом их отдельных представителей. Классификация настолько сократила объем вычислительных работ, что сделала реальным расчет трехмерных структур бе лков, на первых порах низкомолекулярных. Изложенные в книге результаты априорных расчетов структур трипсинового ингибитора, сложного фрагмента нейротоксина II и большого числа олигопептидов, состоящих из десятков аминокислотных остатков, свидетельствуют об адекватном отражении предложенными теориями (бифуркационной и физической) структурной самоорганизации белков и пептидов и реальности предсказания их нативных конформаций. [c.8]

    Трехмерные структуры двух глобулярных белков дали блестящее и, казалось, бесспорное доказательство справедливости господствующим в течение почти двух десятилетий а-спиральной концепции Полинга и структурной классификации белков Линдерстрем-Ланга. В лишенных какой-либо симметрии белковых молекулах а-спираль, действительно, оказалась доминирующей структурой (75%), стабилизированной пептидными водородными связями типа 5 — 1. Идентифицированные структуры удовлетворительно согласовывались и с еще одной гипотезой структурной организации белков - гидрофобной концепцией У. Козмана. [c.73]

    Важнейшим достижением в изучении механизмов структурной организации белков явились экспериментальные исследования Крейтона 1970-1980-х годов, особенно его работы, посвященные эмпирическому подходу к изучению промежуточных состояний обратимой денатурации цистинсо-держащих белков [29, 30]. Разработанные Крейтоном методы позволяют Идентифицировать дисульфидные связи, регулировать скорость их образования и разрушения и по последовательности возникающих промежуточных MOHO-, ди- и т.д. S-S-продуктов следить за ходом свертывания белковой цепи. Предпринятое им на этой основе исследование пути свертывания панкреатического трипсинового ингибитора [29] опережает и сейчас, по прошествии двух десятилетий, научный уровень аналогичных работ по ренатурации других белков. Подход Крейтона, однако, неприемлем для белков, лишенных S-S-мостиков. [c.86]

    Рассмотренная в разделе 2.1 феноменологическая бифуркационная теория свертывания белковой цепи - лишь пролегомены, самый первый шаг к созданию физической теории структурной организации белка и количественного расчетного метода. Неравновесная термодинамическая модель теории сформулирована в такой общей форме, которая еще не допускает прямой экспериментальной проверки. Значение предложенной теории состоит в том, что она, во-первых, дает принципиальную трактовку всем важнейшим особенностям сфуктурной самоорганизации белка беспорядочно-поисковому механизму сборки аминокислотной последовательности, высокой скорости и безошибочности процесса образования трехмерной структуры и, во-вторых, указывает, как показано ниже, направление дальнейшего поиска и раскрывает его содержание. В частности, принципиальное значение имеет то обстоятельство, что бифуркационная теория впервые позволила представить процесс свертывания белка, не требующий при беспорядочно-поисковом механизме сборки рассмотрения всех мыслимых конформационных состояний белковой цепи. Однако сама по себе термодинамическая теория статистико-детерминистического явления не может привести к такому уровню понимания процесса свертывания белковой цепи, который необходим для количественной оценки всех логических связей между аминокислотной последовательностью, трехмерной структурой и окружающей средой, а следовательно, и для апробации лежащих в основе теории принципов. Задача может считаться решенной только после создания физической конформационной теории н расчетного метода, предсказывающих по известному расположению аминокислот в белковой цепи координаты всех атомов в нативной трехмерной структуре и количественно описывающих механизм сборки последней. Лишь при достижении цели, поставленной именно таким образом, физическая теория структурной организации белка сможет стать основой для решения следующих фундаментальных задач, связанных уже с установлением зависимости между строением и функцией. В этом разделе рассмотрены основные положения предложенной автором структурной теории белка [38 2]. [c.100]

    В изучении структурной организации белков и синтетических полипептидов работа Рамачандрана и соав. [58] подобно работам Полинга и Кори [59, 60] явилась одним из тех первых скатывающихся с горы камней, [c.155]

    Итак, были рассмотрены результаты теоретического конформационного анализа совместно с данными экспериментального исследования пространственного строения серии метиламидов N-ацетил-а-аминокислот и их N-метильных производных в различных средах. В основу интерпретации опытного материал ыли положены геометрические и энергетические характеристики ограниченного набора оптимальных конформаций монопептидов, изученных теоретически. При этом обнаружилось полное соответствие между всеми вьшодами теоретического анализа, с одной сто-роньг, и эспериментальными данными, с другой. В результате была установлена непосредственная связь между оптимальными формами рассчитанных монопептидов и соответствующими опытными данными, полученными с помощью различных физических методов теоретический и экспериментальный подходы не обнаружили противоречий в оценке тенденции смещения положений конформационного равновесия у изученных монопептидов при переходе от неполярных к полярным растворам. Тем самым было показано, что использованные в расчете потенциальные функции и параметризация адекватно отражают реальные взаимодействия атомов одного аминокислотного остатка и удовлетворительно имитируют влияние на эти ближайшие взаимодействия окружающей среды. Расчетный метод конформационного анализа выдержал, таким образом, свое первое испытание на пути к решению задачи структурной организации белков. Это, пожалуй, самый важный вывод из проведенного нами комплексного теоретического и экспериментального исследования. Он, конечно, не решал еще многих проблем, но послужил надежным обоснованием дл следующего шага - анализа конформационных возможностей монопеп-тидов всех остальных стандартных аминокислот. [c.172]

    Ответ на поставленный вопрос требует сравнения ставших теперь известными оптимальных конформаций метиламидов N-ацетил-а-аминокислот с конформационными состояниями аминокислотных остатков в нативных трехмерных структурах белков. Первые определяются лишь ближними взаимодействиями, а вторые - суммарным эффектом ближних, фсдних и дальних взаимодействий. Сопоставление должно выявить меру воздействия ближних взаимодействий на реализующиеся в белках конформационные состояния и оценить роль этих взаимодействий в структурной организации макромолекул. В соответствии с одним из принципов постулированной в главе 2 теории [14, 105-107], утверждающим наличие согласованности всех видов внутримолекулярных невалентных взаимодействий, наблюдаемые в трехмерных структурах белков конформационные состояния остатков должны входить в набор низкоэнергетических оптимальных форм метиламидов N-ацетил-а-аминокислот. Только в этом случае представится принципиальная возможность сделать следующий шаг в сторону решения на основе рассматриваемого подхода проблемы структурной организации белков. Целесообразно рассмотреть в отдельности геометрию основных и боковых цепей аминокислотных остатков [108, 109]. [c.181]


Библиография для Структурная организация белков: [c.58]    [c.364]    [c.4]    [c.126]    [c.94]   
Смотреть страницы где упоминается термин Структурная организация белков: [c.126]    [c.168]    [c.55]    [c.77]    [c.79]    [c.80]    [c.107]    [c.109]    [c.129]    [c.189]   
Смотреть главы в:

Биологическая химия Изд.3 -> Структурная организация белков

Биохимия мышечной деятельности -> Структурная организация белков

Биохимические основы жизнедеятельности организма человека -> Структурная организация белков




ПОИСК





Смотрите так же термины и статьи:

РНК структурная организация



© 2025 chem21.info Реклама на сайте