Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оценка правильности результата измерения (анализа)

    При определении количества вещества в пробе обычно выполняют несколько параллельных определений (п 2), которые характеризуются воспроизводимостью полученных результатов вследствие случайных ошибок и правильностью результатов, являющейся следствием систематической ошибки. При обработке результатов анализа пользуются методами современной математической статистики, разработанной для малого числа измерений. Оценку воспроизводимости измерений и правильности производят с помощью следующих величин  [c.194]


    Большое значение для химического анализа имеет статистическая обработка результатов измерений. Критерием правильности метода и воспроизводимости результатов, которые он дает, служит математическая оценка этих результатов. Такая оценка делается в большинстве публикаций, хотя и не всегда однотипно. Статистическая обработка результатов анализов, выполненных в разных лабораториях, важна при аттестации стандартных образцов. Обобщение и оценка данных анализа определенного продукта в цехе, на заводе позволяет вскрыть недостатки технологии или закономерные изменения в качестве сырья. [c.34]

    Альтернативой статистической оценке качества аналитических данных служит простой и наглядный графический метод Юдена [76, 163, 647], позволяющий легко и быстро оценить качество аналитических результатов и выяснить причины их отклонений от истинных или средних значений. Он позволяет оценить роль систематических и случайных ошибок, а также точность и правильность измерений. Суть его заключается в следующем оценка результатов проводится по двум пробам, линии средних значений которых параллельны осям координат и делят графическое поле на четыре квадранта. На график в виде точек наносятся результаты анализов двух проб для каждого участника эксперимента. Сосредоточение точек к пересечению линий средних значений показывает хорошую воспроизводимость результатов. Если в общей ошибке определений какой-либо лаборатории превалируют систематические погрешности, точки расположены в нечетных квадрантах новых координат, а если в четных — доминирующими погрешностями являются случайные ошибки. Точность определения в этом методе [c.143]

    Воспроизводимость результатов анализа — характеристика случайных погрешностей, теория которых (математическая статистика) хорошо разработана [315—318]. Они зависят от стабильности излучения ламп с полым катодом, от стабильности работы распылительной системы, от стабильности свойств пламени и, наконец, от помех ( шумов ) приемников излучения и регистрирующей системы. Поскольку погрешность измерений в атомно-абсорбционном анализе определяется отношением полезный сигнал шум, а полезный сигнал определяется атомным поглощением, то при уменьшении концентрации определяемого элемента, приводящем к уменьшению поглощения, при сохранении постоянного уровня шумов погрешность определения возрастает. Поэтому воспроизводимость определений при концентрациях, близких к пределу обнаружения, невелика. Относительное стандартное отклонение при содержании 25о равно 0,50 (5г=5о/25о) =0,50. Более надежным является предел обнаружения, вычисленный по содержанию, численно равному 35о, что соответствует доверительной вероятности 0,997 и значению 5г, равному 0,33. Таким образом, погрешность Зг дает возможность судить не только о воспроизводимости анализа, но и о значении предела обнаружения. Для многих современных приборов она не превышает 0,01 —0,02, поскольку в довольно большом диапазоне концентраций постоянна и близка к минимальной 5г,мин. В этом диапазоне с минимальным стандартным отклонением — в диапазоне рабочих концентраций — и рекомендуется работать. При оценке же пределов обнаружения более правильно использовать значение стандартного отклонения Зг—Зо/с. [c.110]


    Подчеркнем, что оценка ошибки включает оценку воспроизводимости измерений и оценку адекватности модели, т. е. системы калибровочных коэффициентов Aij. Более точно эта оценка может быть произведена для большого набора анализируемых смесей методом факторного анализа [29]. Оценка же правильности результатов, т. е. их соответствия реальным концентрациям компонентов в смеси, может быть осуществлена только с помощью независимого-метода анализа. [c.81]

    Криометрический метод анализа основан на изучении зависимости температуры термодинамического равновесия твердое тело — жидкость от состава находящихся в равновесии фаз. Очень часто в литературе, посвященной криометрическому методу, указаны только конечные уравнения, связывающие температуру и состав равновесных фаз. Так как оценка правильности результатов измерений не может быть произведена без анализа тех ограничений, которые внесены при выводе уравнений, используемых для расчета, рассмотрим вывод этих уравнений, хотя нам при этом придется повторить известные положения термодинамики. [c.9]

    Правильность, по определению, есть качество анализа, отражающее близость к нулю систематических погрешностей его результатов. Иными словами, правильность можно характеризовать как отсутствие статистически значимого отклонения результата анализа от надежно установленного содержания анализируемого компонента в пробе. Опыт показывает, что в аналитической практике редко приходится встречаться с постоянными по величине систематическими погрешностями. В то же время закон их распределения в большинстве случаев остается неизвестным. Разумеется, можно представить систематическую погрешность как случайную величину, если случайным образом выбрать данные из большого числа измерений для одной и той же пробы в разных лабораториях в течение длительного промежутка времени. Однако ценность определенной таким образом погрешности будет невелика, поскольку нельзя будет использовать полученное значение для практической оценки точности измерений. Поэтому в большинстве случаев необходима разработка таких условий анализа, которые бы позволяли свести систематическую погрешность к статистически незначимой величине. [c.154]

    При обобщении данных разведки и разработки возникают погрешности двух видов систематические и случайные. Выявление систематической погрешности связано с анализом методов определения параметра и заключается в оценке ее знака и предполагаемого значения. Эта погрешность иногда рассматривается как мера правильности измерения или определения результаты тем правильнее, чем меньше значение систематической погрешности. [c.19]

    Выявление систематической погрешности связано с анализом методов определения параметра и заключается в оценке ее знака и предполагаемого значения. Эта погрешность иногда рассматривается как мера правильности измерения или определения результаты тем правильнее, чем меньше значение систематической погрешности. [c.20]

    Несмотря на указанные преимущества, встречаются случаи, когда результаты определения температуры фазового перехода твердое тело — жидкость могут быть неправильно истолкованы. При использовании криометрического метода для анализа высокочистых органических веществ требуется проявлять исключительную осторожность при получении и интерпретации результатов измерений. Для правильной оценки степени чистоты этим методом недостаточно измерить температуру фазового перехода с высокой чувствительностью. Погрешность анализа определяется, во-первых, тем, насколько полно анализируемое вещество отвечает требованиям теории криометрического метода анализа, во-вторых, условиями перевода вещества из твердой фазы в жидкую или наоборот. [c.7]

    Рассмотренный выше механизм реакции гидролиза полимеров до мономера в общих чертах принят и в настоящее время. В большинстве последующих работ изучалась только начальная стадия этой реакции, во время которой доля концевых связей невелика и случайный характер процесса может быть проанализирован при помощи уравнения (23). Однако, прежде чем приступить к этому анализу, необходимо коснуться методов, использованных для оценки глубины реакции, и особенно—подчеркнуть значение правильной, интерпретации результатов измерений молекулярных весов. [c.99]

    Одним из основополагающих факторов выбора методики анализа является ее метрологическая обеспеченность. Между тем, несмотря на большое количество работ по применению ИСЭ в аналитической химии, ни в одной из них в полном объеме не определены метрологические характеристики правильность (мера близости к нулю систематических погрешностей) сходимость или воспроизводимость (мера случайных погрешностей) предел обнаружения. Отсутствие количественных оценок погрешностей для методик анализа с использованием ИСЭ и требований, предъявляемых к точности определения ионного состава, служит препятствием к правильному выбору того или иного класса методики. Это приводит к серьезным ошибкам при практическом использовании ионометрии в анализе природных и сточных вод — многокомпонентных систем с малоизученным и, главное, переменным составом. Исходя из этого, ни одна из известных аналитических методик с применением ИСЭ (кроме рН-метрии) не может быть применена без тщательной экспериментальной проверки и дополнительных исследований по выяснению влияния компонентов состава анализируемого объекта на электродную функцию и результат измерения. [c.101]


    Контрольные диаграммы правильности. Слишком часто предполагают, что правильность метода химического анализа можно проверить в лаборатории с помощью соответствующего стандарта анализируемого вещества, в котором отсутствует матрица реального образца. Стандарты, содержащие только анализируемое вещество, несут в себе серьезные ограничения, если результаты будут использованы для оценки правильности образца, содержащего анализируемое вещество и матрицу. В связи с этим стандартные материалы используются тогда, когда устанавливают правильность метода химического анализа. Затем проводят повторные измерения стандарта, используя выбранный персонал, приборы, методы и реактивы, и лишь после этого можно построить контрольную диаграмму качества, используя центральную линию, проведенную через правильную величину, и откладывая отдельные результаты [40, 41]. [c.642]

    Значительно более серьезную ошибку вносит в результат недостаточная точность интерферометрического измерения величины Are. При точности определения равновесной температуры поплавка в 0,0015° и интерференционного сдвига в 1/70 полосы (Ап = 5 10 при кювете длиной 8 см) недостоверность величин Adx и Ady равна 1,2—1,3 у при точности их суммы в 0,3—0,4 7. Правильность такой оценки ошибок подтверждается сравнением анализов сходных образцов и особенно совпадением совершенно независимых анализов на разных приборах, сделанных в разное время двумя или тремя сотрудниками нашей лаборатории. Эти сравнения показывают, что ошибка лишь в отдельных случаях достигала 1 у для Ad или Ady. [c.325]

    Оценка правильности результатов анализа - проблема значительно более трудная, чем оценка воспроизводимости. Как видно из предыдущих разделов, для оценки воснроизводимости нам не надо иметь ничего, кроме серии параллельных результатов измерения. Для оценки же правильности необходимо сравнение результата измерения с истинным значением. Строго говоря, такое значение никогда не может быть известно. Однако для практических целей можно вместо истинного использовать любое значение, систематическая погрешность которого пренебрежимо мала. Если при этом и случайная погрешность также пренебрежимо мала, то такое значение можно считать точной величиной (константой) и [c.13]

    Правильность (a ura y). Степень близости между полученным результатом и истинным значением. Правильность является качественной характеристикой и включает комбинацию компонентов случайных погрешностей и обычную систематическую погрешность. Это качество измерений, отражающее близость к нулю систематических погрешностей. Отсутствие в химическом анализе систематических погрешностей обеспечивает его правильность (рис. 2.3). Количественной оценкой правильности результата анализа (оценкой систематической погрешности) служит разность между средним (средним арифметическим результатов наблюдений) и истинным значением оп-peдeJ яeмoй величины. [c.62]

    Оценка правильности метода или методики должна проводиться дпя нескольких разных содержаний определяемого компонента, т. е. с использованием двух или нескольких стандартных образцов. Стандартные образцы применяют не только дпя проверки правильности конечного результата определения компонента, но и на отдельных стадиях химического анализа в целях выявления систематических погрешностей. Например, стацдартные образцы часто используют для выявления погрешностей пробоотбора и пробоподготовки, систематической инструментальной погрешности на стадии измерения аналитического сигнала. [c.39]

    В последние годы при оценке точности измерений все больше иснольз /ются методы математической статистики. Применение методов математической обработки результатов измерений может повысить точность и чувствительность анализа Наибольшее распространение получил так называемый дисперсионный анализ ошибок ) сущность которого заключается в разложении суммарной дисперсии на ряд величин. Пользуясь методами дисперсионного анализа, суммарную случайную ошибку спектрального анализа можно разложить на ряд составляющих. Так, например, Л. Е. Бернштейн, В. В. Налимов и О. Б. Фалькова оценке точности и правильности спектральных методов анализа геологических проб разложили суммарную случайную ошибку на следующие составляющие  [c.161]

    Правильность анализа характеризуется систематическими погрешностями. Их выявление, учет и устранение осуществляются в рамках конкретных методов на основании детального анализа всех этапов и общей схемы аналитического определения при постановке специальных экспериментов с использованием стандартных образцов. Воспроизводимость результатов анализа — характеристика случайных погрешностей, теория которых (математическая статистика) к настоящему времени разработана достаточно полно. В приложении к задачам аналитической химии, химическим и инструментальным методам анализа систематический и детальный обзор применения методов и идей математической статистики можно найти в монографиях В. В. Налимова и К. Доерфеля, приводимых в перечне рекомендуемой литературы. В книге А. Н. Зайделя, выдержавшей четыре издания, в доступной и одновременно лаконичной форме рассмотрены узловые вопросы статистической оценки погрешностей измерения физических величин. [c.6]

    В работах Сагдена с сотрудниками [3780, 3781, 3163] были предприняты попытки определить экспериментально величину Л(ОН) на основании измерения концентрации свободных электронов в пламенах, содержащих щелочные металлы и вычисления констант равновесия реакции 0Н ОН + е . Пейдж [3163], выполнивший большую часть этих измерений, обработал полученные им данные совместно с результатами предыдущих исследований [3780, 3781] и нашел для Л (ОН) значение — 65+1 ккал/моль. В результате анализа упомянутых выше косвенных определений величины Л(ОН) Пейдж показал, что ввиду неточности этих оценок они позволяют только сделать вывод, что величина Л(ОН) лежит в пределах от — 45 до —85 ккал/моль, причем значение — 65 ккал/моль наиболее вероятное. Следует, однако, отметить, что найденное в работах [3780, 3781, 3163] значение Л(ОН) существенно зависит от правильности определения механизма образования электронов в пламени, а также величины парциального давления гидроксила в пламени. [c.236]

    Таким образом, определение следовых количеств веществ с концентрациями ниже 3-10 вес.% зависит от сорбирующей поверхности или, говоря проще, может быть систематически неправильным. В этом диапазоне концентраций пробоотбор должен быть динамическим. Динамическими системами называют такие системы, которые обеспечивают непрерывное течение пробы даже при анализе, а также воспроизводимые измерения и характеризуются величиной отношения поверхности объему не намного меньшим, чем 0,3. Кроме того, эти поверхности должны быть очень гладкими и теплыми с наиболее пизкой сорбционной способностью для того, чтобы не привести к ошибочным результатам. Однако при этом появляется и другой источник ошибок сорбированные следовые количества веществ будут находиться в равновесии с протекающей пробой. Любые изменения в составе (полярность, вымывание других десорбирующихся следовых количеств веществ, которые ранее сорбировались), изменения расходов, давления, температуры должны вести к заметному изменению следовых концентраций. Конечно, последнее относится лишь к концентрациям ниже 10 %, однако они не достигают диапазона микропримесей. Насыщенная поверхность действует как губка, адсорбируя и десорбируя следовые количества соединения I в случае достаточно высокой сорбционной емкости, находящейся в диапазоне ниже 10 г1см . Таким образом, только путем статистически контролируемых воспроизводимых измерений, проводимых в достаточно продолжительном отрезке времени для оценки истинного изменения в следовой концентрации соединения г, а также изучения вторичных эффектов, причиной которых являются иные факторы, чем изменение в составе, можно прийти к наиболее правильному определению следовых количеств веществ. [c.198]

    В ВПТ,погрешность определения потенциала данной точки на вольтамперограмме и, в частности, погрешности определения потенциала пика обычно не сказывается на погрешности результата анализа. Так при определении сульфидов методом ВПТ в ячейке с. выносным насыщенным каломельным электродом часто наблюдается односторонний дрейф потенциала электрода сравнения из-за проникновения сульфидов в отделение электрода сравнения. Однако при регистрации вольтамперограммы в достаточно широком интервале напряжения поляризации погрешность определения серы по характерному пику окисления ртути с образованием ее сульфида не наблюдается. В качесгтвенпом анализе при использовании ВПТ для оценки константы устойчивости комплексов по зависимости Ец от Концентрации комплексанта, при оценке обратимости электг рохимической реакции по полуи1иринё пика, при воспроизведении потенциала накопления в ИВПТ (если высота инверсионного пика зависит от этого потенциала) и в ряде других случаев важно точно измерять потенциал и разности потенциалов, соответствующие определенным точкам и отрезкам вольтамперограммы, или котя бы знать погрешности этих измерений. Точность определения потенциала зависит от точности изготовления электрода сравнения, точности учета или компенсации омических падений напряжения и от правильного подбора измерителя напряжения. Точностные характеристики измерительной аппаратуры, как правило, приводят в ее документации. Рассмотрим здесь погрешности измерений потенциалов и разностей потенциалов, зависящие от оператора. [c.117]

    При определении следовых количеств примесей особое значение приобретают вопросы надежности анализа. Как известно, в кинетических методах анализа ошибки определений, как правило, бывают выше, чем в методах, основанных на реакциях определяемого иона с реактивом в стехиометрическом соотношении благодаря сильному влиянию температуры, ионной силы, состояния поверхности сосудов и других факторов на скорость реакции. Поэтому аналитик, использующий кинетические методы, должен обращать особое внимание на статистическую обработку результатов анализа [17, 18]. Статистические методы могут характеризовать лишь йоспроизводи-мость анализа и не дают ответа на вопрос о правильности анализа. Правильность анализа может быть установлена на основе четкого знания химизма всех процессов анализа и с учетом данных независимого метода анализа [19]. С помощью статистических методов можно оценить чувствительность реакции. В основу такой оценки может быть положена величина среднеквадратичной ошибки измерения [20]. [c.32]

    Если учесть возможную небольшую ошибку ib дозе (10—157о), то сходимость результатов обоих измерений вполне удовлетворительна. Близкое совпадение с данными анализа, с одной стороны, подтверждает правильность метода оценки концентраций, а с другой стороны, показывает, что при диссоциации примерно 0,1% молекул на радикалы при температуре жидкого азота эти радикалы не вступают практически ни в какие вторичные реакции. [c.295]

    ДНК, получаемая обычным способом [20], обладает достаточно хорошим качеством для проведения анализа методом геномной дактилоскопии. Наилучшие результаты получают, если на дорол<ку приходится 1—5 мкг ДНК. Поскольку имеет значение не только присутствие, но и интенсивность отдельной полосы, важно достичь равномерного распределения материала между всеми дорожками геля. Хорошо известно, что измерения оптической плотности растворов ДНК дают ненадежные значения концентраций, которые могут рассматриваться только как грубые оценки. Для проверки полноты рестрикции и правильности нанесения необходимо поставить контрольный форез с аликвотами гидролизата ДНК и на основе этого подобрать оптимальное количество наносимой пробы. [c.200]


Смотреть страницы где упоминается термин Оценка правильности результата измерения (анализа): [c.155]    [c.436]    [c.14]    [c.32]   
Смотреть главы в:

Новый справочник химика и технолога Часть 1 -> Оценка правильности результата измерения (анализа)




ПОИСК





Смотрите так же термины и статьи:

Оценка правильности анализа

Оценка результатов

Правильность

Правильность анализа

Правильность результатов анализа



© 2025 chem21.info Реклама на сайте