Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система спиновая относительные интенсивности

    Для анализа спектров с относительно большими значениями //Дv (соответствующие спин-системы называют сильно связанными , хотя абсолютное значение / может быть и не очень большим) не требуется конкретная физическая модель — нам нужно знать не тип молекулы, а число спинов в системе. Анализ спектра сводится к вычислению с помощью квантовомеханических методов уровней энергии и волновых функций стационарных состояний системы связанных спинов, находящихся в статическом внешнем магнитном поле, и затем к нахождению переходов между этими уровнями под действием приложенного ВЧ-поля, для чего используются методы теории возмущений и правила отбора. При этом положения линий в спектре будут функциями расстояний между энергетическими уровнями, а их относительные интенсивности будут определяться вероятностями соответствующих переходов. При удачном выборе параметров расчетные спектры, как правило, будут очень хорошо согласовываться с экспериментальными. По найденным таким образом значениям химических сдвигов и констант спин-спинового взаимодействия можно попытаться воспроизвести структуру изучаемой молекулы или полимерной цепи. Если же строение цепи известно (а так оно обычно и бывает при иссле- [c.43]


    Расчет относительных интенсивностей. Ранее мы рассчитали энергии переходов с помощью разностей собственных значений соответствующих спиновых систем на основе правил отбора Дтт = 1. Однако при этом мы не обращали внимания на относительные интенсивности линий, т. е. на относительные вероятности переходов. В случае системы Аг мы хотели бы поступить другим образом. Примем вначале в качестве условия, что в общем случае относительные интенсивности пропорциональны квадрату так называемого момента перехода М между рассматриваемыми собственными состояниями и Он определяется по уравнению (V. 18), в котором используется оператор 1х. Применяя уравнение (V. 18) [c.157]

    Задача V. 4. Используя волновые функции, приведенные в табл. V. 1 (А) н уравнение (V.18), рассчитайте относительные интенсивности переходов I случае системы АВ в предположении, что спин-спиновое взаимодействие от сутствует. [c.158]

    ТО можно считать, что каждый спин слабо связанной системы имеет свою собственную спиновую температуру. Иными словами, одна и та же разность населенностей имеет место для всех переходов, относящихся к данному спину к. В этом случае относительные интенсивности отдельных линий не зависят от угла поворота /3. [c.209]

    ПОЛЯХ с различной напряженностью ) в спектре для ядра А наблюдается (2/г/х + 1) линий, где /х — спиновое квантовое число X. Относительные интенсивности линий определяются /г-ными биноминальными коэффициентами. Линии находятся на равных расстояниях, и величина расщепления называется константой спин-спинового взаимодействия и обозначается символом Удх-Сказанное справедливо, если резонансы ядер А и X достаточно разделены. Если это не так, то относительные интенсивности линий отличаются от предполагаемых и в зависимости от системы появляется большее или меньшее число линий по сравнению с предсказанным на основании простого анализа с точностью до членов первого порядка. В качестве примера рассмотрим молекулу СНз—СН(ЫОч)—С00 . Метильная группа может свободно вращаться и, таким образом, три метильных протона эквивалентны и система относится к типу АХд. Сигнал от метильной группы появляется в виде дублета с б = 1,5 млн"1 от ТМС и с /нн = 7 Гц вследствие взаимодействия с протоном СН-группы, который резонирует при более низких полях (б = 3,8 млн" ) в виде квартета [c.332]

    Наиболее плодотворным методом для изучения структуры аллильных соединений оказался метод ЯМР, и в первую очередь протонного магнитного резонанса [64, 65]. Спектры симметричных комплексов с незамещенными СзНб-лигандами относятся к АК2Х2-спиновой системе, т. е. дают три сигнала с соотношением интенсивностей 1 2 2. Эти данные свидетельствуют о том, что металл располагается симметрично относительно концевых атомов углерода и о равноценности обеих С—С-связей  [c.108]


    Анализ спектра сильно связанной двухспиновой системы (АВ) выполняется относительно просто. Такая система дает спектр, состоящий из четырех линий (АВ- квартет ), причем две крайние линии (/ и 4) обладают меньшей интенсивностью, чем две внутренние линии (2 и 3). Поэтому может показаться, что четыре линии такого спектра образуют обычный квартет в некоторых случаях (когда Av = V- ab) АВ- квар-тет неотличим от настоящего квартета с относительными интенсивностями 1 3 3 1. Расстояние между линиями каждой из двух пар, образующих этот спектр, равно константе спин-спинового взаимодействия, т. е. /лв = (3—4) = (1—2). Разность химических сдвигов (Av, или просто vab) в этом случае можно вычислить по формуле [c.333]

    Для спиновой системы типа АВ в дублетных сигналах ядер А и Б по мере уменьшения разности Дб и относительного увеличения Jab интенсивность внутренних компонент квадруплета 2 и 3 (рис. 1.7) будут возрастать и они будут сближаться, а интенсивность внешних компонент I и 4 — падать, пока, как имеет место в предельном случае системы Лг (см. выше), компоненты 2 и 3 не сольются (при Д6 = 0), а компоненты 7 и не исчезнут. [c.25]

    Анализ спектров не первого порядка, если они не сводятся к первому, требует специального математического аппарата и моделей для расчетов положения и интенсивности линий, а также моделирующих и итерационных программ для использоваиия ЭВМ. Когда в спиновой системе много взаимодействующих ядер, учитывают свойства симметрии с целью факторизации гамильтониана и сведения задачи к решению нескольких более простых. Так или иначе, в результате проводимого анализа сложных спектров не первого порядка получают значения химических сдвигов и констант спин-спинового взаимодействия, а иногда и важную дополнительную информацию, например, относительные знаки констант. [c.31]

    Интенсивность сигнала пропорциональна числу водородных атомов, находящихся а эквивалентном положении, а химический сдвиг зависит от природы атомов, соседних с данным водородным атомом. Существуют две системы измерения химического сдвига в одной из ннх положение сигнала тетраметилсилана (ТМС) принимается за О и химический сдвиг обозначается буквой б, в другой — положение сигнала ТМС принимается за 10 и химический сдвиг обозначается т. В обоих случаях химический сдвиг выражается в безразмерных единицах м. д. (миллионные доли). Далее в этой книге применяется система т (т = Ю — б). Расстояние между пиками, на которые расщепляется сигнал от взаимодействия с соседними протонами, носит название константы спин-спинового взаимодействия (У). Ее величина, выражаемая в герцах, зависит от пространственного расположения соседнего атома водорода относительно данного, а мультиплетность сигнала определяется числом взаимодействующих водородных атомов. Подробнее см. . [c.63]

    Атомные ядра и электроны обладают магнитными моментами. Это свойство используют в технике магнитной резонансной спектроскопии наложение магнитного поля на ядра и электроны приводит к расщеплению квантовых состояний магнитного момента на ряд энергетических уровней (расщепление Зеемана). Относительно направления приложенного магнитного поля магнитный момент ориентируется в определенных направлениях, отличающихся по магнитной энергии. Наряду с магнитным моментом, ядра и электроны имеют спиновый момент количества движения. Компонент момента количества движения вдоль направления приложенного магнитного поля является целым или полуцелым числом, кратным основной единице момента количества движения Ь (константа Планка, деленная на 2ц). Ядро (или система электронов) со спином / (или 5) могут иметь только 2/ -Ь 1 различных ориентаций в постоянном магнитном поле и, следовательно, 2/ +1 состояний с различной магнитной энергией. Переходы магнитного момента между этими состояниями, сопровождающиеся резонансным поглощением магнитной энергии, происходят под действием излучения соответствующей частоты и поляризации. Наблюдая интенсивности и частоты резонансного поглощения в исследуемом материале, можно установить детали окружения ядер и электронов. Так как большинство веществ, представляющих интерес в гетерогенном катализе, является твердыми телами, в последующем изложении будет обращено особое внимание на магнитный резонанс в твердых телах. [c.9]

    Анализ формы спектра ЭПР нитроксильных радикалов, проведенный в рамках многих моделей в главе II, показал высокую чувствительность спектра к разнообразным изменениям в системе. Детальный анализ экспериментальных спектров предполагает, что сами спектры не искажены при регистрации и адекватно отражают поведение электронных спинов системы. Безусловно, корректный выбор условий работы ЭПР-спектрометра является общей проблемой для ЭПР-спектроскопии но результат ее решения в существенной мере определяется типом парамагнитного центра. В этом смысле и нитроксильные радикалы, используемые в рамках метода спинового зонда, приводят к специфическим и относительно общим для пих условиям ЭПР-эксперимента, которые будут рассмотрены ниже. Однако главное состоит все же не в указании конкретных условий эксперимента, а схемы их выбора, так как конкретные условия, несмотря на их общность для нитроксильных радикалов, могут изменяться от типа исследуемых систем, от интенсивности вращения радикала, а также от типа ЭПР-спектрометра. [c.122]


    Анион-радикал бутадиена, который получается при электролизе бутадиена в жидком аммиаке [31], представляет собой пример радикала с двумя группами эквивалентных протонов, содержащих по 2 и 4 протона соответственно. Не обращаясь к теории, невозможно предсказать, будет ли спектр состоять из трех квинтетов или из пяти триплетов. В гл. 5 с помощью простейшего метода молекулярных орбиталей (метод Хюккеля) показано, что более вероятен второй тип спектра. Спектр на рис. 4-13, а интерпретируется как совокупность пяти хорошо разрешенных триплетов с распределением интенсивности 1 2 1 в каждом. Здесь а = 04 = 7,62 Гс и 2 = 0 3 = 2,79 Гс. Надо построить систему уровней только для одного из спиновых состояний Ма, так как обе системы представляют собой зеркальные отображения одна другой. Если представить уровни энергии в таком масштабе, как показано на рис. 4-13, б, то относительные расстояния между уровнями соответствуют расстояниям между линиями в спектре ЭПР (ср. рис. 4-13, б и 4-13, а). Высота каждой линии пропорциональна кратности вырождения соответствующего уровня. Относительные длины соответствуют [c.68]

    Следует подчеркнуть, что межмолекулярный обмен протонов представляет собой лишь один из типов обменных явлений, который влияет на спин-спиновое взаимодействие и особенности спектра. Из изучения уширения линий и появления расщепления можно получить данные о кинетике других превращений. Например, значительная работа была проделана по изучению энергетического барьера вращения в замещенных этанах. Также весьма интенсивно ведутся работы по изучению конформационных изменений в цик-логексанах и других циклических системах, и именно на основании этих работ была получена большая часть количественных данных относительно энергетических барьеров взаимопревращений, а также подтверждены качественные представления, изложенные в гл. 4. Основополагающим фактом во всех этих работах является то, что аксиальные и экваториальные протоны или протоны, входящие в состав экваториальных или аксиальных групп типа СНз, ОН, КНг и т. д., не являются магнитно эквивалентными и поэтому имеют различные значения величин б и /. Еще одним типом обмена является инверсия гетероатомов, таких, как третичный атом азота. Так, было показано, что третичные амины RR R"N действительно подвержены инверсии конфигурации (гл. 4, разд. 5, Д) с измеряемой скоростью даже при низких температурах. [c.136]

    В спектре ПМР нет сигналов в сильном поле (б < 6,0 м.д.), следовательно, молекула не содержит протонов при насыщенных атомах С. Синглет в очень слабом поле (6 13,2 м. д.) подтверждает наличие карбоксильного протона, а плохо разрешенный мультиплет, находящийся в области химических сдвигов ароматических протонов (б 7,5 м. д.), означает присутствие ароматического ядра. Остальные четыре пика представляют типичную спиновую систему АВ (ожидаемая симметрия, в распределении интенсивности по компонентам, одинаковые расстояния между компонентами асимметрического дублета), а поскольку сигналы находятся в области химических сдвигов олефиновых протонов, следует сделать вывод о присутствии либо фрагмента двузамещенной двойной связи, либо фрагмента =СН—НС=. Высокое значение константы спин-спинового взаимодействия олефиновых протонов (расстояние между компонентами асимметричных дублетов системы АВ составляет 0,25 м. д., что соответствует Jab = 0,25-60 = 15 Гц) может быть связано только с присутствием транс-двузамещенной олефиновой связи (см. ПУШ). Относительные интенсивности сигналов ароматических и олефиновых протонов соответствуют отношению 5 2, что указывает на присутствие фенильной группы (в ней пять протонов). Наличие [c.222]

    Переход (3) (2) не учитывается, так как в соответстви с правилами отбора допустимы только такие переходы, для которых суммарный спин волновой функции изменяется на единицу (Атт = 1). Это соответствует разумному допущению с том, что один квант может изменить ориентацию лишь одногс ядра. В табл. V. 1 (А) приведены результаты анализа системь АВ без спин-спинового взаимодействия. Расчет относительны) интенсивностей отдельных переходов рассмотрен в разд. 4.3.2 [c.152]

    Отметим, что они различаются только энергиями взаимодействия с протонными спиновыми состояниями. Если протоны системы являются неэквивалентными, то в спектре наблюдаются четыре линии одинаковой интенсивности. Разность частот между крайними линиями спектра дает величину 1еА - - Ьв, а между внутренними линиямивеличину /ел — /ев . Константы взаимодействия могут иметь как положительные, так и отрицательные значения. Непосредственному определению поддаются только их абсолютные величины, причем из одного только спектра ЭПР невозможно сделать отнесение каждой из них конкретно к ядру А или В. Знаки констант взаимодействия могут быть установлены при помощи экспериментов по ЯМР, выполненных для радикалов. Если ядра являются эквивалентными, то /ел = = 1ев и Уб2 = V7з В этом случае в спектре обнаруживаются только три линии с относительными интенсивностями 1 2 1. [c.373]

    Объяснение. Идентификация магнитных промежуточных продуктов, образующихся при передаче одного электрона в окислительно-восстановительных реакциях, имеет большое значение. Электронно-спиновая резонансная спектрометрия не только позволяет провести такую идентификацию, но также дает возможность отличить первичные свободные радикалы от продуктов их полимеризации. Простым примером тaкJЭГ0 свободного промежуточного радикала является ион полубензохннона, образующийся в окислительно-восстановительной системе р-бензохинона. Спектр р-полубензохинона показан выше. Пять линий этого спектра являются следствием изотропного магнитного взаимодействия нечетного электрона кольца с ядерными моментами атомов водорода. Этот электрон чувствует относительную ориентацию, ядерного момента каждого атома водорода, и поскольку каждый атом имеет почти равную возможность расположить ось своего момента по направлению действия поля или навстречу ему, то возникающий спектр состоит из пяти линий. Относительные интенсивности этих линий подчиняются закону биномиальных коэффициентов. Расстояние между линиями является ме-ро( [ величины -состояния волновой функции нечетного электрона в водороде и одновременно мерой я-электронной плотности в соседних атомах углерода кольца. [c.247]

    Спектр АА ВВ с сильной связью между спинами несет несколько больше информаций о спиновой системе ввиду того, что соотношение параметров влияет на относительную интенсивность линий спектра. Если это влияние достаточно, чтобы сделать выбор между положительным и отрицательным значением параметра К (при положительных М, Ь VI М), то можно определить и относительные знаки сумм (/д Ч- Уд) и (/ -Ь / ). Обычно после нахождения всех параметров спектра строят два теоретических спектра — один с положительными Н, Ь, М ж К, а другой — с отрицательным К. Сравнение этих спектров с экспериментальным позволяет выбрать знак К. Однако для построения каждого теоретического спектра необходимо диагонализи-ровать матрицу IV порядка или, что то же самое, решить вековое уравнение четвертой степени. Прош е всего этот громоздкий расчет осуш,ествить с помош ью электронно-вычислительной машины. [c.179]

    Одновременное облучение образца двумя (или несколькими) радиочастотными полями нередко позволяет получить информацию, которую трудно получить другими способами. Если одно из полей используется для наблюдения резонанса, а другое (или другие) используется для возмущения спиновой системы, то такой метод называется двойным (или множественным) ядерным магнитным резонансом. Если частота возмущающего поля совпадает с резонансной частотой одного из взаимодействующих ядер и это поле имеет достаточную мощность, то второе ядро ведет себя в основном поле так, как будто спин-спинового взаимодействия не существует. Такая методика подавления спин-спинового взаимодействия часто приводит к значительному упрощению спектров и облегчает их интерпретацию. Если же возмущающее поле имеет достаточно низкую мощность, то на резонансной частоте основного поля у второго ядра обнаруживается дополнительное расщепление, которое может сопровождаться изменением относительных интенсивностей ком- понент мультиплета. Эта методика называется тиклинг-резонансом или двойным резонансом со слабым возмущающим полем и обладает большими достоинствами при анализе сложных спектров. Изменение интенсивностей при этом обусловлено ядерным эффектом Оверхаузера. [c.330]

    Нередко, однако, встречаются осложнения, из-за которых интерпретация спектров оказывается гораздо более трудной, чем в приведенных выше примерах. Но вместе с тем подобные осложнения часто являются источником дополнительной информации об изучаемых системах. Первым из таких осложнений, которое мы вкратце рассмотрим в этом и более подробно в следующем разделах, является химический обмен. Если происходит быстрый обмен, то в спектре ЯМР наблюдается только усредненное окружение ядра. Так, например, в случае аммиака, растворенного в воде, протекает очень быстрая реакция обмена протона с водой. Спектр ЯМР протона состоит при этом только из одного пика, который имеет среднюю из частот всех протонов при кислороде и азоте. Если обмен достаточно быстрый, исчезает и спин-спиновое расщепление, так как спектрометр ЯМР детектирует только среднее спиновое состояние ядра, обусловливающего расщепление. В связи с этим уместно вспомнить проведенное выше обсуждение относительно расщепления у Н2Р(0Н). Спектры растворов Т1р4 в донорных растворителях, снятые при —30°, состоят из двух триплетов равной интенсивности [21]. Такого спектра следует ожидать для цис-структуры (рис. 8-21), в которой имеются два набора неэквивалентных атомов фтора с двумя эквивалентными атомами в каждом. Однако при 0° появляется только один пик фтора и предполагается, что происходит быстрая реакция диссоциации, вследствие которой все атомы фтора становятся эквивалентными [c.291]

    Измерения магнитной восприимчивости и спектров ЭПР — ценные методы обнаружения взаимодействий между ионами Ре(П1), однако они не дают сведений о геометрии комплексов, образуемых ионами Ре(П1) в состоянии А . Ранее уже было описано расщепление энергетических уровней пяти d-орбиталей под влиянием поля лигандов в комплексах октаэдрической, тетраэдрической и тетрагональной симметрии (рис. 54). Спектры поглощения необычных пентакоординационных соединений с основным состоянием S = = /з определяются интенсивным поглощением, которое, по всей вероятности, обусловлено переносом заряда, но переходы, определяемые полем лигандов, идентифицировать однозначно не удается [29]. Можно ожидать, что эти переходы будут по своей энергии и интенсивности сильно отличаться от переходов в октаэдрических и тетраэдрических комплексах. Хотя температурную зависимость магнитной восприимчивости в димерных системах Ре—О—Ре можно объяснить антиферромагнитным взаимодействием или между двумя спинами 5 = Vj, или между двумя спинами S = V-2 ионов в основном состоянии, основное состояние S = для комплексов октаэдрической и тетраэдрической симметрии исключается. С точки зрения изучения многоядерных железосодержащих белков интерес представляют только слабые лиганды, которые не могут привести к образованию иона в основном состоянии со спином S = /2. Поэтому в дальнейшем можно ограничиться обсуждением систем с основным состоянием 5 = Vg — единственным состоянием, которое позволило объяснить полосы поглощения, обусловленные полем лигандов, в наименьших многоядерных системах, образуемых железом, — в димерах Ре—О—Ре [40]. Сходство этих полос у мономерных и димерных шестикоординационных комплексов Ре(1И) согласуется с относительными величинами энергии антиферромагнитного спин-спинового взаимодействия (J 100 см" ) и переходов, обусловленных полем лигандов (J > 10 000 см ) Исходя из теории поля лигандов и простых электростатических соображений, можно ожидать, что поле, создаваемое четырь- [c.343]

    При исследовании, полиэтерификации ФК и АК (или СК) с ЭГ (двухстадийный синтез в расплаве при 200° С) было обнаружено [57], что сигнал олефиновых протонов ФК состоит из трех линий с химическими сдвигами 6,79 (а), 6,74 (Ь) и 6,69 (с) мд., причем соотношение интенсивностей этих линий изменяется в ходе процесса (рис. 3.9). Пик с принадлежит оле-финовым протонам свободной ФК, пик Ь - олефиновым протонам звеньев ФК на концах цепи полиэфира (в форме кислых эфиров) —О—(0)С—СН= =СН—С (О) —ОН и пик а — протонам звеньев ФК в середине цепи (в форме полных эфиров) -0-(0)С-СН=СН-С(0)-0-. Нужно отметить, что оле-финовые протоны ФК в форме кислых эфиров неэквивалентны и образуют систему типа АВ. Однако поскольку для данной системы разность химических сдвигов < 6 Гц, то при константе спин-спинового взаимодействия 17 Гц расстояние между двумя центральными пиками квартета АВ будет составлять около 1 Гц, расстояние между внешними пиками — около 35 Гц, а соотношение интенсивностей внутренних и внешних пиков квартета будет, соответственно, примерно 35 1. В результате внешние линии квартета тонут в шумах, а внутренние сливаются в один пик, площадь которого можно, с точностью 2-3%, считать пропорциональной содержанию кислых эфиров ФК в реакционной смеси. Таким образом, с помощью ПМР-спектроскопии можно изучать кинетику накопления и расходования в системе исходных, промежуточных (без их вьщеления) и конечных продуктов реакции. По кинетической кривой промежуточного продукта реакции - кислых эфиров ФК, имеющей характерный вид кривой с максимумом, оценена относительная жтивность двух реакционных центров ФК в реакции полиэтерификации константа скорости реакции первой СООН-группы ФК превьшгает (примерно вдвое) константу скорости реакции второй группы. [c.107]

    В импульсном методе каждый очередной высакочастотный импульс возбуждается как только спиновая система возвратится в первоначальное состояние после воздействия предыдущего импульса (это будет происходить приблизительно через каждые ЗГ2 с при T2=Ti). Фурье-анализ утверждает, что серия очень узких импульсов воздействует на спиновую систему так же, как возбуждение последовательностью равных по интенсивности непрерывных сигналов, сдвинутых по частоте друг относительно друга на расстояние г= 1 ЗТ2). Для импульсного ЯМР (как и для стационарного) такое значение периода близко к оптимальному по средней входной мощности и насыщению и обеспечивает регистрацию сигнала от каждого разрешаемого элемента спектра. Таким образом, при импульсном методе за определенное время возбуждаются и наблюдаются не один, а все Nr разрешаемых элементов одновременно. При этом полный выигрыш в чувствительности по напряжению (при больших значениях Nr) равен Отметим, что наблюдаемое увеличение числа разрешаемых элементов является существенным преимуществом импульсного ЯМР. [c.138]


Смотреть страницы где упоминается термин Система спиновая относительные интенсивности: [c.322]    [c.253]    [c.222]    [c.208]    [c.135]    [c.323]    [c.300]    [c.87]    [c.277]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Интенсивность относительная

Система спиновая



© 2025 chem21.info Реклама на сайте