Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные группы экстрагирующихся соединений

    Иногда по компонентному составу экстрактивные вещества древесины подразделяют на три группы алифатические соединения терпены и терпеноиды фенольные соединения. Эти группы соединений отличаются своими свойствами и локализацией в древесине. Алифатические соединения, терпены и терпеноиды экстрагируются малополярными растворителями, тогда как для фенольных соединений требуются полярные органические растворители, способные образовывать водородные связи. Алифатические соединения концентрируются главным образом в лучевой и древесной паренхиме, фенольные соединения - в ядровой древесине, а терпены и терпеноиды (в основном монотерпены и смоляные кислоты) - в смоляных ходах. Фактически при такой классификации не учитьшаются соединения, извлекаемые из древесины только водой и не растворимые в органических растворителях. [c.497]


    Третий путь экстракционной очистки соединений рубидия и цезия предполагает использование сильноосновных растворителей, из-за значительной донорной способности которых растворитель присоединяется к катиону соли образуются устойчивые экстрагируемые соединения щелочных металлов [241]. Основность таких органических растворителей определяется функциональными группами типа Р -> О, полуполярные связи которых и стерическая доступность атома-до-нора электронов (0, N, S) обеспечивают высокую способность сольва-тировать, а значит, и экстрагировать щелочные металлы. [c.147]

    В химическом анализе применяется много различных экстракционных систем. В общем их можно разделить на две большие группы комплексы металлов с неорганическими лигандами и комплексы с органическими реактивами. К первой группе принадлежат ацидокомплексы различных металлов с ионами галоидов, родана и некоторыми другими. Экстракцию обычно ведут из кислой среды кислородсодержащими растворителями. Широко применяется также экстракция подобных систем с добавлением высокомолекулярных аминов или основных красителей при этом экстрагируются соединения типа аммонийных солей сложных аминов с ацидокомплексами металлов. К группе неорганических экстрагирующихся комплексов относятся также гетерополикислоты. [c.47]

    Среди труднолетучих, растворимых лишь в эфире, веществ группы ТЛ1 могут присутствовать в основном углеводороды, спирты, галоидопроизводные, простые и сложные эфиры, альдегиды и кетоны, карбоновые кислоты, фенолы, нитросоединения и основания. Эфирный раствор исчерпывающе экстрагируют соляной кислотой и щелочью экстракты, подкисленные или подщелоченные, снова обрабатывают эфиром этим путем можно добиться весьма глубокого разделения. Среди труднолетучих, растворимых как в воде, так и в эфире, веществ ТЛ II могут быть жирные кислоты, полигидроксильные соединения, енолы, оксимы, амиды кислот, аминокислоты, аминофенолы. Можно пытаться разделить их путем извлечения эфирного раствора кислотами и щелочами. При этом часто бывает целесообразно произвести дробное извлечение, обрабатывая по очереди бикарбонатом, карбонатом и едкой щелочью, или, наоборот, щелочной водный раствор подкислить, затем с помощью бикарбоната насытить раствор углекислотой и затем экстрагировать эфиром. При этом следует применять преимущественно специальные приборы для экстракции. [c.18]


    Неорганические ковалентные соединения (1а) можно экстрагировать как органическими растворителями, не содержащими кислорода (четыреххлористый углерод, хлороформ, бензол и т. д.), так и кислородсодержащими растворителями (простые эфиры, спирты, сложные эфиры, кетоны и др.). Однако всегда следует использовать растворители первой группы, так как они экстрагируют ограниченный ряд неорганических веществ. Кислородсодержащие растворители требуются для извлечения ионных неорганических соединений (16). Благодаря основному характеру кислородного атома молекулы этих растворителей могут координировать с ионом металла или соединением, замещая при этом молекулы воды, с образованием оксониевых комплексных соединений, которые растворимы в органическом растворителе. Может показаться, что приведенная выше классификация экстрагируемых веществ не точна, поскольку неорганические ионные соединения, состоящие из ионных пар, экстрагируются не сами по себе, а в той или иной степени нуждаются во взаимодействии с растворителем таким образом, фактически экстрагируются органические соединения. Однако полезно провести грань между неорганическими и органическими ионными соединениями, ибо взаимодействие последних с органическим растворителем не происходит или по крайней мере осуществляется значительно слабее, чем с неорганическими соединениями. [c.45]

    Если твердый материал нерастворим или растворим не полностью, то количественное определение методом анализа равновесной паровой фазы провести нельзя, поскольку при этом невозможно ни идентифицировать основной компонент, ни приготовить калибровочные стандарты. В исключительных случаях удается количественно экстрагировать определяемые компоненты из твердой фазы каким-либо растворителем и затем провести анализ равновесной паровой фазы раствора. Однако чаще всего хроматограммы материалов этой группы сравниваются с полученными в аналогичных условиях хроматограммами известных соединений. Ниже рассмотрены некоторые примеры таких анализов. [c.96]

    Вероятно, другую группу могли бы составить случаи соэкстракции, обусловленные образованием в водной фазе плохо диссоциированных смешанных соединений, способных экстрагироваться. Это могут быть, например, соединения полиядерного характера, включающие как основной, экстрагирующийся элемент, так и второй элемент, который в отсутствие основного элемента экстрагируется хуже. Этот вопрос рассмотрен В. И. Кузнецовым и П. Д. Титовым [7]. Они наблюдали увеличение коэффициентов распределения вольфрама при экстракции его анилином из кислотных растворов в присутствии больших количеств молибдена и ванадия. Вольфрам экстрагируется в виде солей, образованных цоливольфраматами (анионы) с анилинием (катион). Увеличение экстракции вольфрама в присутствии молибдена и ванадия авторы связывают с образованием сложных нолианионов, в состав которых входит и вольфрам. [c.25]

    При выборе метода выделения фенола, встречающегося в природе, необходимо учитывать не только свойства соединения, как упоминалось выше, но также и химический состав биологического источника. Растительный материал состоит в основном из нерастворимой целлюлозы и лигнина, а в свежем виде может содержать также большое количество (70—80%) воды. Кроме того, могут присутствовать хлорофилл, воски, жиры, терпены, сложные эфиры, растворимые в воде соли, гемицеллюлозы, сахара и аминокислоты. Из свежего или сухого материала, как правило, сначала выделяют с помощью неполярного органического растворителя (например, петролейного эфира, гексана, бензола, хлороформа или эфира) нефенольные, неполярные вещества. Фенольные соединения можно затем выделить путем экстракции ацетоном, этанолом, метанолом или водой, причем выбор растворителя определяется числом гидроксильных групп и остатков сахара в молекуле. В некоторых случаях растительные материалы подвергаются непосредственной экстракции щелочью, но это не всегда приводит к хорошим результатам. Фенолы из растительного материала затем очищаются путем ряда экстракций и осаждений. С этой целью сырой материал переносят в несмешивающийся растворитель, такой, как эфир, бутанол или этилацетат, и смесь последовательно экстрагируют разбавленными растворами оснований в порядке возрастания активности сначала ацетатом натрия (для удаления сильных кислот), а затем бикарбонатом натрия, карбонатом натрия и едким натром. Водные экстракты, содержащие искомые продукты, подкисляют и вновь экстрагируют бутанолом, эфиром или этилаце-татом. Процедуру повторяют до получения кристаллического продукта. Подобное фракционирование в настоящее время осуществляется путем автоматической подачи несмешивающихся растворителей по принципу противотока (Хёрхаммер и Вагнер [9]). Фенолы можно отделять от других продуктов, содержащихся в растениях, путем осаждения с помощью нейтрального или основного ацетата свинца. Этим методом до некоторой степени отделяются о-диоксисоединения (дают осадок) от монозамещенных соединений (не дают осадка). Соли свинца разлагают серной кислотой, сероводородом или катионообменными смолами и свободные с )енолы элюируют из неорганических солей спиртом. [c.36]


    Теория этих важных методов разработана мало. Обычное представление о подобных соединениях, как о ионных ассоциатах, является лишь упрощенной моделью. Такая схема дает возможность описать некоторые термодинамические характеристики реакции, влияние концентрации красителя, отмечает значение ра змера иона красителя 52]. Однако указанное представление не объясняет многих важных особенностей, например влияния pH, влияния концентрации электроотрицательного лиганда и др. Ионный ассо-циат представляет собой продукт простого сочетания двух ионов, спектр поглощения такого ассоциата в значительной степени аддитивен, а прочность определяется главным образом зарядом и радиусом ионов — компонентов. По спектрам поглощения рассматриваемая группа окрашенных соединений отвечает ионным ассоциатам. Однако многие другие свойства не определяются только зарядом и радиусом ионов компонентов. Например, выше отмечалось большое влияние гидролиза галогенидных комплексов. Между тем если принять за основу теорию ионных ассоциатов, названное влияние нельзя объяснить. Действительно, замена в ацидоком-плексе одного иона фтора на гидроксил-ион почти не изменяет размера, расположения в пространстве и эффективного заряда комплекса анион [BF4] в этом отношении практически не отличается от аниона [BF3 (0Н)] . Однако первый комплекс образует с основным красителем хорошо экстрагирующиеся соли, тогда как второй не реагирует. Аналогичные явления имеют место для сурьмы, тантала и др. Ряд важных вопросов, как выбор оптимального значения pH, выбор оптимальной концентрации электроотрицательного лиганда и многие другие, нельзя решить с помощью теории ассоциатов они пока решаются лишь эмпирически. [c.353]

    Расчет жидкофазно,го равновесия в процессе экстракции связан с общей теорией растворов. Современное состояние теории растворов позволяет предсказывать свойства только некоторых ТИЛОВ растворов. В основном же свойства растворов изучаются с помощью экспериментальных методов с целью получения эмпирических зависимостей. Определение свойств растворов, необходимых для расчета равновесия, в частности, составов растворов, выполняется в форме различных корреляций коэффициентов активностей от физических свойств системы. Коэффициенты активности вводятся для хдрактеристики отклонения свойств данного реального раствора от идеального, подчиняющегося закону Рауля. Только очень разбавленные растворы приближаются по свойствам к идеальным растворам. В более концентрированных растворах наблюдаются отклонения, которые тем больше, чем выше концентрация. Причины отклонений от законов идеальных растворов хорошо понятны только для одной группы соединений — сильных электролитов. Теория сильных электролитов позволяет вычислить активность из основных свойств ионов. Для остальных соединений активности определяются эмпирически путем измерения давления пара или осмотического давления растворов. Необходимо отметить, что изменение распределения извлекаемого вещества (веществ) при установлении общего равновесия в жидкофазной системе вызывается изменением коэффициентов активности экстрагирующего соединения или соединений в обеих фазах. Существенное изменение коэффициентов активности, однако, может быть вызвано и. химическим взаимодействием компонентов. Весьма часто системы, которые необходимо разделять, представляют собой либо соли, либо основания, а сам процесс разделения является процессом хемосорбции, протекающим в диффузионной области. Таким образом, при расчете равновесия в двухфазной системе жидкость — жидкость необходимо [c.149]

    Большое значение имеет группа методов, основанных на образовании тройных комплексов. При этом бор сначала переводят в комплекс заменой кислорода борной кислоты на другие лиганды, как фторид или салицилат. Образующиеся комплексные кислоты, например НВр4, дают с рядом основных красителей новые соединения (тройные комплексы), мало растворимые в воде, но растворимые в некоторых органических растворителях. Подбирая кислотность и подходящий органический растворитель, можно найти условия, при которых свободный краситель, не экстрагируется тогда окраска неводного слоя пропорциональна содержанию бора в пробе. [c.49]

    Весьма устойчивые соединения с некоторыми металлами образуют фенолы, имеющие в своем составе кроме кислотной основную группу. При этом образуются так называемые внутрикомплексные соли (обычно 5—6-членные циклы), которые эффективно экстрагируются органическими растворителями. Хорошо известны производные нитрозонафтола, о-питрозофенолы, 1-(2-пиридилазо)-2-наф-тол и его аналоги, а также другие реагенты, нашедшие широкое применение в аналитической химии. Многочисленные исследования по экстракции металлов фенолами и нафтолами, образующими внутрикомплексные соединения, в настоящем обзоре не приводятся. Достаточно полные данные по этим вопросам можно найти в монографиях И. Стары [1] и Ю. А. Золотова [2]. [c.3]

    Способность аминов извлекать кислоты по реакциям нейтрализации, а также способность солей аминов и ЧАО извлекать одноименные кислоты по реакциям присоединения, а также одноименные соли металлов по реакциям образования комплексов типа двойных солей в общем случае обусловливается следующими основными факторами, связанными со строением молекул экстрагента 1) распределением между водной и органической фазами экстрагирующегося соединения, образующегося в результате реакции экстракции 2) прочностью этого соединения 3) степенью и видим ассоциации молекул солей аминов и ЧАО, от которой зависит возможность равноценного участия в реакциях экстракции всех, находящихся в органическом растворе молекул этих экстрагентов 4) степенью гидратации функциональной группы молекулы экстрагента, приводящей к снижению его способности координировать экстрагируемое соединение. [c.31]

    Однако было отмечено, что нуклеофильность анионов солей аминов — не единственный фактор, определяющий прочность их соединений, и что необходимо учитывать влияние и других факторов, особенно стерических препятствий для образования экстрагирующихся соединений со стороны заместителей у атома азота. При чрезмерном увеличении объема заместителей и создаваемых ими стерических эффектов прочность экстрагируемых соединений может снижаться даже в тех случаях, когда при этом возрастает положительный индукционный эффект заместителей. Если при экстракции образуются комплексные анионы необычно большого объема или к атомам азота аминов присоединены слишком объемистые заместители, соли первичных алкиламинов с меньшими стерическими препятствиями вокруг нуклеофильной группы могут оказаться лучшими экстрагентами, чем соли третичных аминов, несмотря на большие положительные индукционные эффекты заместителей в последних. Можно предположить [57], что в тех случаях, когда индукционные эффекты заместителей изменяются мало и в основном влияют стерические факторы, должно соблюдаться частное соотношение [c.37]

    Как видно из полученных результатов, хорошей экстрагирующей способностью по отношению к НСЮ обладают кетоны алифатического и циклического строения — МЭК, метилпропилкетон (МПК), циклогексанон (ЦГ), циклопента-нон (ЦП), сложные эфиры органических и неорганических кислот (бутилацетат, этилацетат, ТБФ), степень извлечения которыми при объемном соотношении растворителя к водной фазе 1 2 находится в пределах 91-95%. Введение в молекулу растворителя атома галогена резко снижает экстрагирующую способность (хлорекс, хлоркетоны (ХК), СС14, фторированные соединения). Сказывается, по-видимому, способность галогена оттягивать часть отрицательного заряда с активной группы, за счет чего снижается ее основность. Особенно резко этот эффект сказался при использовании фторсодержащих соединений. Атом фтора, обладающий высокой электроотрицательностью, изменяет распределение электронной плотности в молекуле, снижая или совсем лишая ее основных свойств. [c.58]

    Основная масса соединений СпНзп-г Оа экстрагируется водным раствором серной кислоты. В выделенных экстрактах сильных АО идентифицированы карбоксилсодержащие структуры с 2 = 7, 13, 19. Атомы азота и карбоксилсодержащие группы разнесены далеко друг от друга. Соединения С Н2 гК0 идентифицированы лишь в АК-3 и могут быть отнесены к пиридонам. [c.31]

    Помимо ксиланов хвойная древесина содержит разнообразные маннаны. В. И. Шарков, экстрагируя водой, выделил из предварительно размолотой на вибромельнице древесины ели обыкновенной глюкоманнан [109] с СП = 30. Из данных метилирования, пер-йодатиого окисления и других показателей установлено, что основная цепь этого полисахарида разветвлена, построена из блоков, объединяющих остатки D-маннопираноз и D-глюкопираноз, соединенных -гликозидной связью (1—>-4). Концевые группы ветвлений состоят из остатков основной цепи D-маннопиранозы. На каждые 5—6 гексозных остатков основной цепи приходится одно ответвление. При этом участок цепи полимера имеет вид [c.85]

    В настоящее время наряду с методом адсорбции, характерным для процесса извлечения антибиотиков основного характера, в производстве стрептомицина широко используется более простой метод экстракции, наиболее типичным примером которого является процесс извлечения пенициллинаш. Ввиду того, что стрептомицину свойственна резко выраженная лиофильность, переведение его из водной фазы в органический растворитель достигается при помощи так называемых переносчиков, т. е. таких органических веществ, которые обладают способностью обратимо реагировать с функциональными группами антибиотика (в данном случае — гуанидиновыми или карбонильной), образуя соединения, растворимые в органическом растворителе легче, чем в воде. Такими веществами-переносчиками для стрептомицина являются различные жирные кислоты (С-5— j8), например, лауриновая, стеариновая и др., сульфированные алифатические спирты, анионные детергенты типа арил- или алкилсульфо (или суль-фоновых) кислот 24в 248 25в. В качестве экстрагирующего растворителя применяется амиловый спирт, который полностью извлекает из водной фазы (при рН 9) соединение стрептомицина с переносчиком. При последующем подкислении минеральной кислотой достигается освобождение стрептомицина. Из водного раствора, после нейтрализации и концентрирования в вакууме, стрептомицин осаждают ацетоном (или другим реагентом) или же полученный концентрат непосредственно подвергают дальнейшей очистке. " [c.534]

    Третий способ экстракционной очистки соединений рубидия и цезия предполагает использование сильно основных растворителей, значительная донорная способность которых приводит к непосредственному присоединению растворителя к катиону соли и к образованию таким образом устойчивых экстрагируемых соединений щелочных металлов. Основность подобных органических растворителей обусловливается функциональными группами типа фосфориальной- -РО , полуполярные связи которых (при переходе электрона наряду с электростатическим притяжением возникает дополнительная ковалентная связь) и хорошая стерическая доступность атома, донора электронов (кислород, азот, сера), обеспечивают высокую способность сольватировать и, следовательно, экстрагировать щелочные металлы. [c.115]

    Координационно-несольватирован-н ы е соли. Сюда относятся соли тетрафениларсо-ния, тетрафенилфосфония и подобных им ионов, которые вследствие больших размеров не имеют координационных связей с молекулами воды. Реагенты этой группы удобны для отделения крупных однозарядных анионов типа перрената или перхлората. К этой же экстракционной системе можно отнести соли крупных комплексных катионов, подобных Ре(Фен) +, где Фен—1,10-фе-нантролин. Эти катионы экстрагируются в присутствии подходящих анионов, скажем, перхлората. К координа-ционно-несольватированным солям целесообразно причислить также соединения, образуемые комплексными металлсодержащими анионами с основными красителями. Примером может служить соль Sb le и кристаллического фиолетового. [c.13]

    Соединения урана в перлах солей (особенно фторидов) обладают очень чувствительной флуоресценцией. В присутствии ионов алюминия и трехвалентного железа в качестве коллекторов уран(VI) осаждается аммиаком или фосфат-ионом. За этими исключениями, в химии урана доминирует комплексообразование. Так, уран(VI) дает растворимые комплексы с избытком карбонат-иона, в то время как многие другие металлы осаждаются. Уранил-ион образует комплексы с нитрат-ионом, которые легко экстрагируются органическими содержащими кислород растворителями, способными координироваться с U0 в качестве монодентатных лигандов. К таким растворителям относятся диалкил-эфиры, кетоны, сложные эфиры, триалкилфосфаты (координирующиеся своей фосфорильной группой Р- 0) и окиси триал-килфосфина. Факторами, влияющими на выбор растворителя, служат низкая растворимость его в воде, относительно высокая диэлектрическая проницаемость, устойчивость и, в случае фос-форильных соединений, основность кислорода фосфорильной [c.363]

    В зависимости от источника получения и специфических свойств отдельных соединений применяются различные способы их выделения и очистки. Все глюкозиды растворимы в воде и спирте и мало растворимы в растворителях, не содержащих гидроксильных групп. Высушенные и измельченные семена, листья или корни часто экстрагируют сначала эфиром или лигроином для удаления жиров и смол. Глюкозиды переводят в раствор путем исчерпывающей экстракции метиловым или 70 /о-ным этиловым спиртом остаток после экстракции состоит в основном из клетчатки. Спиртовой раствор упаривают в вакууме до густой сиропообразной консистенции и экстрагируют теплой водой. Нели полученный таким образом раствор оставить стоять в течение нескольких дней, то из него часто выде 1яется смесь неочищенных глюкозидов однако обычно рекомендуется подвергать глюкозиды дальнейшей очистке. Сапонины можно осадить из раствора добавлением основной уксуснокислой соли свинца, причем избыток реагента удаляют затем из фильтрата при помощи серной кислоты или фосфорнокислого натрия. Путем экстракции водного раствора эфиром или хлороформом из него удаляют смолы все физиологически активные вещества остаются в водном слое. Глюкозиды можно выделить, насыщая очищенный указанными способами водный рас- [c.487]

    Методы ТСХ часто объединяют с ГЖХ, поскольку последняя отличается большей чувствительностью и более пригодна для количественных определений [572]. В этом случае пластинки опрыскивают раствором родамина G или 2,7-дихлорфлуо-ресцеина (либо хроматографию проводят на пластинках, содержащих указанные флуоресцентные индикаторы), соединения группы витамина Е обнаруживают по тушению индуцированной УФ-облучением флуоресценции, соответствующие зоны сорбента соскабливают, вещества экстрагируют и анализируют с помощью ГЖХ [573, 574]. Газо-жидкостная хроматография является, по-видимому, основным методом определения токоферолов и их сложных эфиров в различных объектах [575— 578]. Большинство исследователей используют колонки с низкой степенью покрытия носителя неподвижной фазой, например 0,3% апиезона L [578, 579] или 2—5% SE-30 на газохроме Q или хромосорбе HP [572, 574, 576] либо 0V-1 на газохроме Q [580]. Для хроматомасс-спектрометрического анализа была применена колонка, содержащая 1% OV-1 (разделение проводили при 240 °С) [580]. Согласно данным работ i[572, 573], фаза SE-30 предпочтительнее 0V-17, поскольку время удерживания анализируемых соединений на ней меньше. Недостаток насадочных колонок заключается в том, что на них трудно отделить -токоферол от 7-токоферола. Высокой разрешающей способностью обладают открытые капиллярные колонки с не-иористым слоем, внутренняя поверхность которых дезактивирована силаноксом и покрыта полярной фазой — сульфоном по-лифенилового эфира [581]. На таких колонках разделяют токоферолы в виде их триметилсилильных производных. [c.266]

    Многие из соединений группы тетрапиррола могут выполнять роль фотосенсибилизаторов в процессах перехода кислорода из основного триплетного состояния в синглетное. Поскольку двойные связи конъюгированных ароматических систем, а также ненасыщенные боковые заместители способны взаимодействовать с кислородом в синглетном состоянии, целесообразно — по меньшей мере в тех случаях, когда неизвестны химические свойства компонентов анализируемой смеси, — осуществлять хроматографическое разделение в отсутствие света (обычно достаточно обернуть колонку или хроматографическую каме-ру алюминиевой фольгой) и защищать вещество от воздействия света до и после хроматографирования. Кроме того, ароматический характер тетрапирролов способствует как одноэлектронному окислению циклической части молекулы, так и аутоокислению периферических заместителей, протекающему через промежуточное образование радикалов типа бензила. Когда молекулы адсорбированы на большой поверхности неподвижной фазы, скорость указанных реакций может существенно возрасти под действием света или окислителей, например присутствующих в растворителях пероксидов. Таким образом, как и в случае большинства других хроматографических экспериментов, для разделения рассматриваемых соединений следует использовать растворители подходящей квалификации. В силу того что тетрапирролы обладают высоким сродством к ионам металлов, необходимо позаботиться о том, чтобы растворители и сорбент не содержали примесей ионов тяжелых металлов, способных образовывать комплексы с хроматографируемыми соединениями. На практике, когда проводят выделение достаточно больших количеств вещества, это свойство тетрапирролов, как правило не создает особых проблем. Однако при работе на аналитическом уровне, особенно если соединения экстрагированы из природных источников, будь то биологические ткани или геологические образцы, необходимо отдавать себе отчет в том, что присутствие ионов металлов может привести к некоторому искажению хроматографической картины. Не существует никаких других удобных и общих способов избежать этого, кроме как свести к минимуму вероятность контактов образца с ионами металлов или металлами в ходе его экстракции, подготовки к анализу и хроматографирования (следует отметить, что даже никелированный шпатель может оказаться источником загрязнения образца). Поскольку константы связывания порфиринов с ионами металлов часто соизмеримы по своей величине с константами, характерными для таких хелатирующих агентов, как ЭДТА, использование последних при низкой концентрации с [c.203]


Смотреть страницы где упоминается термин Основные группы экстрагирующихся соединений: [c.15]    [c.35]    [c.46]    [c.46]    [c.9]    [c.67]    [c.66]    [c.164]    [c.308]    [c.665]    [c.10]    [c.104]    [c.511]    [c.158]    [c.434]   
Смотреть главы в:

Экстракция галогенидных комплексов металлов -> Основные группы экстрагирующихся соединений




ПОИСК





Смотрите так же термины и статьи:

Основность соединений

соединения группа



© 2025 chem21.info Реклама на сайте