Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие физико-химические свойства волокон

    Индиговое крашение. Кубовое крашение. Индиго был раньше важнейшим органическим красителем. Его значение объясняется превосходным качеством выкрасок по шерсти, очень прочных к свету, стирке, щелочам и кислотам. Однако вследствие абсолютной нерастворимости индиго в воде и спирте приходится применять особый метод крашения, известный под названием кубовое крашение . Этот метод применяется также для закрепления на волокне многих других красителей, имеющих аналогичные физико-химические свойства (см. стр. 729). [c.696]


    Для сверхтонкой и тонкой очистки нефтяных масел можно также использовать фильтрующие материалы ФП (фильтры Петрянова), которые широко применяются в различных областях техники. Материал ФП представляет собой тонкий, равномерно распределенный по площади слой ультратонких перхлорвиниловых (ФПП) или ацетатцеллюлозных (ФПА) волокон, которые в зависимости от условий изготовления и марки материала могут быть прочно связаны между собой в местах соприкосновения (ФПП-Д) или свободно расположены относительно друг друга (ФПП-15, ФПА-15 и др.). Иногда волокна в наружных слоях связаны друге другом, а во внутренних слоях не связаны (материал ФПП-20С). Физико-химические и фильтрационные показатели материалов ФП зависят от свойств полимера, из которого они изготовлены, от диаметра волокон, от плотности и структуры материала и других факторов. В настоящее время материалы ФП изготавливают из волокон диаметром от 0,6—1,0 до 10—12 мкм. Размер пор равен 0,6—12 мкм. [c.224]

    Благодаря ценным физико-химическим свойствам материалы из стеклянного волокна широко применяются в электротехнической, химической, строительной, авиационной, автомобильной промышленности, в железнодорожном транспорте и других областях. [c.337]

    Конопатка раструбов должна выполняться двумя-тремя прочно закрученными жгутами из хорошо пропитанной смолой и битумом пеньки с длинными волокнами (без костры) или другими уплотнителями, отвечающими физико-химическим свойствам транспортируемого продукта. Концы жгута должны перекрывать друг друга. Толщина жгута должна быть больше ширины щели между гладкими концами трубы и раструбом. [c.282]

    Химическое сырье для выпуска товаров народного потребления в других отраслях. С применением химического сырья в стране выпускается товаров народного потребления более чем на ПО млрд. руб. в год, в том числе в легкой промышленности более чем на 80 млрд. руб. К числу этих товаров относятся химические волокна и нити, пластмассы, смолы и изделия из них, текстильно-вспомогательные вещества (ТВВ). Удельный вес этой продукции в общем обьеме химических производств составляет 47 %. Ассортимент химических волокон по внешним и физико-химическим свойствам приближается к натуральным волокнам (шерсти, шелку). [c.7]

    Шестая книга монографии Химические волокна посвящена волокнам, обладающим специфическими свойствами и предназначенным ДЛЯ применения в самых различных областях. Эти новые материалы удачно названы волокнами третьего поколения . К важнейшим из них относятся термостойкие, жаростойкие, негорючие и некоторые другие волокна. Каждому из этих волокон присущи ценные, а по ряду показателей уникальные механические и физико-химические свойства. [c.6]


    При физической модификации волокна не претерпевают химических превращений и состав полимера не изменяется. Однако фи-зико-механические и. физико-химические свойства волокон могут очень сильно изменяться в зависимости от условий формования, отделки, вытягивания, термообработки и других обработок. [c.356]

    При рассмотрении крашения волокнистых материалов различными красителями следует, что среди них отсутствуют такие, которые могли бы окрашивать все волокнистые материалы. А те красители, которые и окрашивают несколько видов волокон, требуют создания таких условий обработки, которые, как правило, несовместимы. Условия окрашивания одного волокна могут оказать неблагоприятное воздействие на физико-химические свойства других волокон. Кроме того, окраски, получаемые одним красителем, на различных волокнах имеют различные оттенки. Однако с непрерывным расширением сырьевой базы в целях придания тканям специальных свойств и облагораживания их все в большем количестве изготовляют ткани из смесей волокон. Крашение таких смесей представляет определенные трудности в отношении выбора красителей, условий крашения, достижения одинакового оттенка. [c.208]

    Особый интерес вызывает изотактический полистирол (с регулярным строением полимерной цепи), который отличается рядом преимуществ по сравнению с обычным полистиролом. К числу таких преимуществ относится, например, возможность использования его для получения волокна и для других целей. Поэтому неуклонно растет число работ, посвященных разработке новых методов получения и переработки полистирола и его сополимеров, исследованию его физико-химических, механических и других свойств. [c.269]

    По ряду физико-механических и химических свойств терилен превосходит другие синтетические волокна (даже найлон). Высокие диэлектрические качества и термическая [c.310]

    Исследование фибриллярных белков типа шелка и шерсти представляет крайне трудную задачу, так как они нерастворимы в воде. Шелк состоит из длинных фиброиновых нитей, связанных с другим белком — серицином. Имеются различные данные о молекулярном весе фиброина, однако обычно его принимают равным 84 ООО [108]. Много работ было посвящено выяснению аминокислотного состава фиброина, причем было установлено, что он состоит более чем на 50% из остатков глицина и аланина. На отдельных фракциях фиброина было проведено селективное расщепление с последующим анализом концевых групп. Применяя различные физико-химические методы, такие, как рентгеноструктурный анализ, инфракрасную и ультрафиолетовую спектроскопию, пытались сопоставить данные, полученные при исследовании различных фракций фиброина. Были сделаны также попытки расположить аминокислотные остатки таким образом, чтобы объяснить механические и химические свойства волокна [108]. [c.417]

    Особое место в Энциклопедии отведено природным и синтетическим полимерам, физико-механическим свойствам, способам их получения и применения. Описаны каучуки, резина, смолы, пластмассы, пленкообразующие вещества, лаки, целлюлоза, химические волокна и другие. [c.5]

    Технология полимеров, как и других материалов, уже давно идет по пути создания композиционных материалов, в которых за счет направленного сочетания компонентов стремятся получить требуемый комплекс свойств. Возможности для этого в полимерах поистине огромны. Стеклопластики, усиленные эластомеры, ударопрочные пластики, пластики, армированные неорганическими и органическими волокнами и наполненные порошкообразными наполнителями, многокомпонентные полимерные смеси, термоэластопласты, полимербетоны — вот далеко не полный перечень композиционных полимерных материалов, широко применяемых в различных областях современной техники. Однако несмотря на достаточно широкое использование композиционных полимерных материалов, научно обоснованные принципы создания таких материалов с заданным комплексом свойств все еще отсутствуют. Это особенно относится к материалам, содержащим лишь полимерные компоненты, таким как смеси полимеров, блок- и привитые сополимеры и др. В связи с этим необходимо отметить, что в последние годы чрезвычайно активно проводятся работы, направленные на выяснение физико-химических факторов, обусловливающих совместимость и сегрегацию компонентов и формирование характерной микрогетерогенной структуры и морфологии, особенностей сопряжения микро- и макрофаз и их устойчивости при воздействии температур, механических напряжений и других факторов. Это позволяет надеяться, что такие принципы будут в ближайшее время разработаны. [c.13]

    Модифицированные образцы были подвергнуты некоторым фи-зико-механическим испытаниям. Прочность на разрыв и разрывное удлинение при комнатной и повышенной температурах (100°) практически не отличалась от исходных образцов. Как и следовало ожидать [4], сорбция воды на полученных образцах меньше, чем на исходных. Растворимость в 85%-ной муравьиной кислоте модифицированных образцов по сравнению с исходным капроновым волокном значительно ниже. В настоящее время исследуются адгезионные свойства и устойчивость к истиранию полученных образцов. Более подробно результаты физико-химических, механических и других свойств модифицированных образцов будут приведены позднее. [c.48]


    Высокие эксплуатационные показатели, обусловленные ценным сочетанием хороших физико-механических и химических свойств с низкой стоимостью материала и возможностями эстетического оформления изделий, привели к бурному росту производства полиолефинов и их проникновению в различные отрасли промышленности и сельского хозяйства. Они широко используются в автомобилестроении, авиационной и судостроительной промышленности, строительстве и машиностроении, производстве искусственного волокна и кожи, вытесняя более дорогостоящие металлы, дерево, стекло и успешно конкурируя с другими пластмассами. [c.173]

    Среди жаростойких волокон особое место занимают углеродные и графитированные волокна. Они обладают поистине уникальными физико-химическими и механическими свойствами, что предопределяет разнообразные области их применения. Особого внимания заслуживают высокопрочные (200—300 кгс/мм ), высокомодульные (модуль Юнга 25-10 —45-10 кгс/мм ) углеродные волокна иа их основе изготовляются конструкционные материалы, в которых используются полимерные и другие типы связующих. Благодаря низкой плотности волокна композиции имеют очень высокие удельные механические характеристики. [c.9]

    С целью улучшения эксплуатационных свойств армированных покрытий был проведен комплекс исследований, направленных на изучение влияния различных физико-химических факторов (концентрации и природы поверхности волокнистых наполнителей, способа армирования, прочности взаимодействия на границе полимер-наполнитель, структуры волокна и др.) на процесс формирования армированных покрытий, внутренние напряжения и другие физико-механические показатели. [c.174]

    Хлориновое волокно, которое изготовляется из поливинилхлорида путем дополнительного хлорирования, не поглощает влаги и не набухает в воде. Оно отличается высокой химической стойкостью и устойчиво к действию микроорганизмов. Оптимальные физико-механические свойства ткани получаются при полотняном способе переплетения нитей, при котором нити переплетаются друг с другом по очереди. Ткани полотняного переплетения имеют квадратное строение пор и наиболее равномерное расположение пор по поверхности ткани. Ткани саржевого переплетения имеют большую плотность, чем ткани полотняного переплетения. [c.38]

    Активные добавки наряду с физико-химическим влиянием, оказываемым на коллоидно-растворенные частицы моющих веществ (например, снижение критической концентрации), должны обладать и другими свойствами. Они должны гидролизоваться (смещать pH) обладать поверхностной активностью, эмульгирующей и пенообразующей способностью суспендирующей способностью и способностью стабилизировать дисперсии моющей способностью оказывать определенное действие на волокно. [c.253]

    При непродолжительной (10—20-минутной) обработке предварительно отмытых водой или слабыми солевыми растворами измельченных поперечнополосатых мышц 0,5—0,6 М раствором КС1 (или Na l) в экстракт переходит большое количество белка, называемого миозином. Этот белок входит в состав мышечных фибрилл — сократительных элементов мышечного волокна. В мышечной плазме миозина нет. Физико-химические свойства этого белка, несколько напоминающего глобулины (миозин вьшадает из солевого раствора в осадок при диализе или разведении чистой водой), были впервые изучены Кюне, А. Я. Данилевским и его учениками, а затем подробно описаны Вебером, Эдсаллом, В. А. Энгельгардтом и М. Н. Любимовой, А. Сент-Дьердьи и другими исследователями. [c.440]

    В производстве бумаги и бумажных изделий, как и во многих других отраслях промышленности, широко применяют различные суспензии и пасты из наполнителей, клеящих веществ, пигментов и латексов [603, 604]. Вместе с тем основной полупродукт производства — бумажная масса — представляет собой систему, обладающую обратимой тиксотропно-коагуля-ционной структурой. Физико-химические свойства этой системы определяются,-в первую очередь, силами взаимодействия между дисперсными частицами и свойствами жидких прослоек. Так, изменение вязкости и прочностных характеристик массы по мере ее размола обусловлено главным образом увеличением дисперсности волокна, вследствие чего изменяется баланс сил притяжения и отталкивания между частицами. Этот фактор играет существенную роль в формировании бумажного листа [9, 484]. [c.139]

    Упругопрочностные и физико-химические свойства УВМ определяются видом исходного сырья, условиями получения, дополнительными специальными обработками и другими факторами. Требования к свойствам волокон зависят также от их назначения, и поэтому подбираются соответствующие оптимальные условия получения волокна. [c.298]

    По физико-химическим свойствам целлюлоза отличается от других полихмеров. Она практически не растворяется ни в одном из известных в настоящее время растворителей органического происхождения, обладает стойкостью (на холоду) к разбавленным растворам кислот, щелочей и многих активных химических реагентов, достаточно тепло- и термоустойчива. Все эти качества целлюлозы придают волокнам определенные свойства, обеспечивающие возможность применения изделий из них в обычных условиях эксплуатации.  [c.73]

    Перечисленные структурные показатели в большей или меньшей степени изменяются во время тепловых или термопластификационных обработок, в результате чего химические волокна приобретают новые молекулярную и надмолекулярную структуры и другие физико-механические свойства. [c.86]

    По своим физико-химическим свойствам многие синтетические материалы близки к природным полимерным веществам — х.иопковому, льняному и шелковому волокнам, шерсти, коже, натуральному каучуку, а некоторые по механической прочности, химической стойкости и другим качествам значительно превосходят их. [c.92]

    В то же время аппреты, содержащие аминогруппу, способствующие повышению показателей физико-механических свойств стеклопластиков на основе фенольных и эпоксидных смол, оказались малоэффективными в случае полиэфирных смол. Такая избирательность действия аппретов еще раз подтверждает решающее влияние химических процессов, происходящих между компонентами системы стеклянное волокно — аппрет — связующее. Действие аппретов на основе кремнийорганических соединений также оказывается избирательным и зависит от характера групп, связанных с атомом кремния. Избирательность действия аппретов создает известные технологические трудности, что обусловило применение универсальных аппретов. Препараты этого типа содержат группы с двойными связями, а также фенильные ядра или аминогруппы. Поэтому они могут взаимодействовать как с полиэфирными связующими, так и с фенольными и эпоксидными смолами. Примером такого универсального аппрета является продукт взаимодействия аллилтрихлорсилана с резорцином [32— 35] и продукт взаимодействия аллилового эфира 2,4,6-триметил-олфенола с винилтрихлорсиланом [36]. Имеются и другие виды универсальных аппретов [И, с. 240]. [c.332]

    Триацетатное волокно арнель имеет целый ряд преимуществ по сравнению с волокном на основе частично гидролизованной ацетилцеллюлозы. Такие свойства как высокая термостойкость, безусадочность, хорошая химическая стойкость позволили расширить области использования этого волокна. В дополнение к обычному ассортименту изделий, вырабатываемых из нитей, штапельное триацетатное волокно применяется для изготовления штапельных тканей как в чистом виде, так и в смесках с другими волокнами, в частности с вискозным волокном и хлопком. Триацетатное волокно дороже ацетатного, однако благодаря лучшим физико-механическим свойствам в некоторых случаях ему отда- [c.327]

    Улучшение качества продукции и создание новых видов химических волокон. Благодаря структурной, химической и так называемой механической модификации удалось в последние годы значительно улучшить физико-механические свойства волокон. Например, путем структурной модификации прочность вискозной кордной нити была увеличена с 28—30 до 40—45 гс/текс этим путем получено полинозное (хлопкоподобное) и высокопрочное вискозное штапельное волокно. Химическая модификация дает возможность получать волокна, обладающее жаростойкими, бактерицидными, ионообменными и другими ценными свойствами. Под механической модификацией понимают изменение некоторых свойств химических волокон (как, например, увеличение объемности) механическими способами — получение высокообъемных нитей эластик. Резко увеличивается производство полиэфирного волокна лавсан и полиакрилонитрильного волокна нитрон организуется выпуск полипропиленовых и [c.83]

    Очень важной и интересной областью применения мелами-но-формальдегидных смол является пропитка д и различных тканей для придания последним несминаемости и уменьшения усадки. Эти смолы прочнее удерживаются на ткани и вообще дают наилучшие результаты по сравнению с мочевиноформаль-дегидными и другими смолами [188—190]. Имеется ряд обзоров по этому вопросу Бувье [116], Смита [117] и других [118, 191 — 193]. На суть происходящего при этом процесса имеются в настоящее время два различных взгляда. Робинсон [194] и некоторые другие считают, что происходит химическое взаимодействие смолы с волокном. Другой взгляд заключается в том, что смола просто проникает внутрь волокна, где осаждается механически. Процесс проводится пропиткой ткани раствором смолы, содержащим катализатор, с дальнейшей обработкой для окончательной поликонденсации. При этом происходит обычно увеличение жесткости и прочности ткани [195]. Изменением условий обработки и применением тех или иных добавок можно изменять физико-механические свойства полученной ткани [118, 196—201]. Недостатком этого метода придания тканям безусадочности и несминаемости является постепенное удаление смолы из ткани. Пакшвер [202] указывает, что при повышении температуры обработки устойчивость аппрета Возрастает. [c.195]

    Протекаемость жестких диафрагм возрастает в очень широких пределах с увеличением давления фильтрации. Для асбестовых диафрагм наблюдается специфическая зависимость протекаемости от давления фильтрации -Во время работы асбестовой диафрагмы происходят сложные физико-химические процессы ее взаимодействия с электролитом, волокна асбеста набухают, происходит их сжатие и другие деформации под влияниел давления, на диафрагме могут отлагаться твердые частицы графита, соединений магния, кальция, железа, осаждаться продукты хлорирования масла, использованного для пропитки анодов. Эти процессы приводят к изменению свойств диафрагмы в процессе электролиза. [c.43]

    Физико-механические свойства пространственных полимеров зависят от их химического строения и числа межмолекулярных связей (частоты сетки). По мере увеличения частоты сетки повышается твердость, температура размягчения, термостойкость и уменьшается растворимость полимера. Эти свойства, ценные в готовых изделиях, затрудняют формование полимерного материала. Поскольку пространственные полимеры не плавятся и не растворяются, из них нельзя формовать волокна и пленки. С другой стороны, часто для ювышения термостойкости и улучшения упругих и других свойств полимеру необходимо придать в готовом изделии пространственное строение. [c.301]

    Один из факторов, влияющих на выбор типа приемных механизг MOB, служит свойство усадки химических волокон в определенной степени по длине при проведении некоторых технологических операций — промывки и отделки, сушки, вытяжки, термофиксации, т. е. так называемое стремление волокна к усадке с изменением при этом его физико-механических свойств — крепости и удлинения. В некоторых случаях это стремление волокНа к усадке необходимо обеспечить, в других случаях ему надо противодействовать. [c.194]

    Прочность волокон, химическая структура которых указана в таблице, оказывается невысокой по сравнению с прочностью волокон из других гетероциклических полимеров, например полиимидов, полибензимидазолов. Необходимо отметить, что, такие физико-механические свойства лестничных волокон, как влаготоглощение, усталостные характеристики и другие, в технической литературе не указаны. Более подробно описаны овойства волокна лола, полученного советскими исследователями путем мокрого формования сернокислотных растворов полимера, имеющего предположительно блок-лестничную структуру (табл. 4.43) [216]. [c.165]

    Во время карбонизации изменяются физико-химические и механические свойства волокна одни скачкообразно, другие мояотоино во всей области ВТО. В начале пиролиза, при котором преобладают процессы деструкции, о и Е уменьшаются, достигая минимального значения примерно при 400— 500 °С, что соответствует области максимальной концентрации ПМЦ (см. рис. 3.21). Последующее возрастание этих величин служит убедительным подтверждением возникновения и совершенствования структуры углеродного волокна. Резкое падение электрического сопротивления служит дополнительным веским доказательством интенсивно протекающей ароматизации и образования базисных плоскостей, так как благодаря большой концентрации в них я-сопряжений изменяются электрофизические свойства УВ. [c.283]

    Итак, среди органических волокнистых материалов для изготовления углеродных волокон наиболее широко используются вискозное и полиакрилонитрильное волокна. Это не исключает целесообразности изучения карбонизации других типов химических и природных волокон, так как только на основании обобщения огромного экспериментального материала можно создать теоретические основы этого нового и важного производства, а также выявить неиспользованные потенциальные возможности улучшения комплекса физико-механических свойств углеродных в.олокон. [c.225]

    Химически модифицированное волокно — химическое волокно, улучшение физико-механических и эксплуатационных свойств которого по сравнению с основным типом достигается изменением химического состава (например, прививкой молекул другого вещества или сшивкой, т. е. образованием поперечных связей). См. мтилон, корвел, топел, графлон. [c.145]

    После термообработки и отделки химические волокна, как правило, менее чувствительны к механическим воздействиям. Если прилагаемые усилия сравнительно невелики, волокна испытывают только эластические деформации. Необходимо лишь следить за тем, чтобы процесс релаксации этих волокон мог полностью закончиться во время их производства (во избежание появления глян-цуссов, зебристости и других дефектов). Если же механические усилия велики, возможны разрывы отдельных волокон и появление ворса. Однако физико-механические свойства неповрежденных волокон и форма кривых на диаграмме Н—У в принципе должны измениться незначительно. [c.407]

    Это различие в свойствах волокон древесины, обусловливаемое их различной морфологической структурой, выявляется для древесной целлюлозы еще более отчетливо, чем для хлопкового волокна различной зрелости. Исследование этого вопроса, имеющее большое практическое значение, начато только в самые по-с.педние годы в связи со значительно возросшим применением древесной целлюлозы для производства искусственного волокна. В различных отраслях промышленности, особенно в промышленности искусственного волокна, уже давно было известно, что разные образцы древесной целлюлозы часто обладают при одних и тех же химических и физико-химических показателях различной реакционной способностью и дают после этерификации растворы, имеющие различную фильтруемость и прозрачность, а это вызывает значительные технологические затруднения. Причины заключаются в разной морфологической структуре волокон, а также в различной степени разрушения структуры волокна при его механической или химической обработке. Так, например, в клетках сердцевинных лучей содержится больше лигнина и меньше целлюлозы, чем в других клетках древесины Содержание лигнина в клетках сердцевинных лучей доходит до 32%, в то время как в среднем в древесине содержится около 25% лигнина. Содержание целлюлозы в клетках сердцевинных лучей на 8—12% ниже, чем среднее содержание ее в древесине. [c.136]


Смотреть страницы где упоминается термин Другие физико-химические свойства волокон: [c.56]    [c.30]    [c.71]    [c.290]    [c.696]    [c.143]    [c.7]    [c.329]    [c.156]    [c.364]    [c.34]    [c.156]    [c.112]   
Смотреть главы в:

Термо-жаростойкие и негорючие волокна -> Другие физико-химические свойства волокон




ПОИСК





Смотрите так же термины и статьи:

Волокна химические

Другие волокна

Другие свойства

Свойства химических волокон

Свойства химических волокон Свойства химических волокон



© 2025 chem21.info Реклама на сайте