Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДЕСТРУКЦИЯ ПОЛИМЕРОВ В АГРЕССИВНЫХ СРЕДАХ

    Моисеев и др. [32] показали, что в зависимости от соотношения скоростей диффузии агрессивной среды и химической реакции в полимере деструкция в агрессивных средах может протекать в следующих областях внутренней диффузионно-кинетической (деструкция протекает в реакционной зоне, размер которой увеличивается во времени, и в конечном итоге она распространяется на весь объем полимерного изделия  [c.14]


    Органические кислоты, продуцируемые грибами, с одной стороны, повышают агрессивность среды, стимулируя процессы коррозии металлов и деструкцию полимеров, с другой — служат источником углерода для дальнейшего развития микроорганизмов. [c.53]

    Для установления механизма деструкции полимеров в агрессивных средах необходимо определить  [c.38]

    Образование сквозных трещин в защитных полимерных покрытиях при контакте с химически активными средами является частным случаем распространенного процесса растрескивания покрытий под действием механических напряжений и агрессивных сред — коррозионного растрескивания. Коррозионное растрескивание полимеров имеет место при одновременном действии на материал растягивающих напряжений и агрессивной среды. Начинается процесс с зарождения дефектов и их постепенного развития в одну или несколько магистральных трещин. Дефекты в полимерном покрытии могут возникать в процессе изготовления или в процессе эксплуатации, например в результате химической деструкции. [c.48]

    Органические конструкционные материалы — органические полимеры (пластмассы) — обладают высокой химической стойкостью ко многим агрессивным средам, но подвержены термической и фотохимической деструкции, биологической коррозии в результате действия жидких и газообразных агрессивных сред. [c.9]

    Полимерные материалы в процессе эксплуатации или хранения могут контактировать с агрессивными средами, под действием которых протекают следующие процессы сорбция компонентов агрессивной среды десорбция из полимерного материала различных добавок (стабилизаторов, пластификаторов и т.д.) химическая деструкция растворение полимера изменение физической структуры (степени кристалличности, микропористости и т.д.). Под действием [c.408]

    Химической деструкции чаще всего подвергаются полимеры, эксплуатирующиеся в агрессивных средах. [c.70]

    В отличие от физически активных сред химически активные агрессивные среды при контакте с полимерным материалом вызывают необратимые изменения химической структуры полимеров. Совокупность химических процессов, приводящих под действием агрессивных сред к изменениям химической структуры полимера, его молекулярной массы, называют химической деструкцией [7, с. 10]. [c.12]


    Воздействие агрессивной среды на полимер может сопровождаться его набуханием, диффузией среды в полимер и химическим взаимодействием, приводящим к деструкции пластика. [c.112]

    Пластмассы характеризуются сравнительно высокой химической стойкостью и широко используются как конструкционные материалы в различных агрессивных средах. Однако нх механические свойства предел прочности, долговечность, пластичность, ползучесть — могут в значительной степени изменяться под влиянием среды. Кроме того, все полимерные материалы подвержены старению, вызванному деструкцией полимера, испарением пластификатора или другими процессами, приводящими к разрушению химических и физических связей в полимере. Воздействие химических веществ, тепла, влажности и механических напряжений усиливает процесс старения. Большинство пластмасс в большей или меньшей степени набухают в различных жидкостях. Набухание сопровождается изменением объема, механических, электрических, оптических свойств. [c.92]

    Скорость диффузии реагента и катализатора в полимер значительно превышает скорость химич. реакции. В этом случае после набухания полимера в агрессивной среде деструкция ироисходит во всем ого объеме, т. е. реакция протекает в кинетич. режиме. [c.243]

    Основными процессами, протекающими при контакте полимера с агрессивной средой, являются сорбция компонентов среды, химическая деструкция и растворимость полимера, адсорбция из него различных веществ — модификаторов, пластификаторов, добавок и др. Однако существующие методические трудности разделения каждого из перечисленных процессов на составляющие (например, сорбцию — на адсорбцию, абсорбцию, капиллярную конденсацию, осмос и др.) не позволяют получить в рамках одной модели точные количественные оценки защитного эффекта покрытия и особенно многокомпонентных систем, какими являются лакокрасочные материалы. [c.83]

    Кинетические параметры деструкции полимеров в агрессивных средах [c.324]

    В табл. 36.5 приведены кинетические параметры деструкции полимеров в агрессивных средах, [c.325]

    Обследование коррозионного состояния оборудования производства ПЭНД показывает, что основной причиной коррозии аппаратуры является воздействие на нее агрессивной среды, которая содержит хлороводород, образующийся при разложении катализатора. Процесс коррозии оборудования приводит к уменьшению его срока службы, частым ремонтам аппаратуры и загрязнению полиэтилена продуктами коррозии. Соединения железа, попадающие в полимер, отрицательно влияют на его физико-химические и механические свойства. Они вызывают преждевременное старение (деструкцию) полимера, нежелательную окрашиваемость изделий в темно-серый цвет, увеличивают хрупкость, снижают диэлектрические свойства полимера. Кроме того, при коррозии аппаратуры, покрытой лаками, бывает, что частицы лака попадают в полиэтилен, что проводит к его вспучиванию или к образованию пор внутри полимера. [c.236]

    Действие агрессивных сред на каучуки и резины, находящиеся в ненапряженном состоянии, рассматривается в монографии [5], где также обсуждается влияние на процесс разрушения химического строения и структуры полимеров и факторов, относящихся к среде. При химическом взаимодействии резин с жидкостью или газом могут происходить необратимые изменения каучуковой основы, в результате чего обкладки или покрытия на металлах утрачивают защитные свойства. К высокоактивным химическим средам следует отнести нагретые растворы азотной и соляной кислот, концентрированную серную кислоту, неорганические и органические пероксиды, озон, фтор, хлор и другие галогены. Особо следует выделить жидкие органические кислоты, которые могут при высоких концентрациях проявлять себя и как реакционноспособные соединения и как органические растворители. В качестве первых они реагируют с макромолекулами сшитого каучука, в качестве вторых — сильно ослабляют межмолекулярные связи. Водные растворы большинства минеральных солей, а также кислот, не обладающих окисляющими свойствами, при средних концентрациях и температурах диффундируют в резины, вызывая набухание без деструктивного распада макромолекулы каучука. В этом случае основная нагрузка падает на адгезионный подслой, который должен служить дополнительным антикоррозионным барьером. Здесь уместно заметить, что большинство антикоррозионных резин на основе карбоцепных каучуков (а возможно, и других) обладают избирательной диффузионной проницаемостью, т. е. проявляют мембранный эффект. Именно поэтому они, например, в дистиллированной воде набухают больше, чем в морской, а в морской больше, чем в концентрированных растворах минеральных солей. На некоторые гетероцепные каучуки, например на полиэфируретаны, горячая вода оказывает химическое действие, вызывая гидролитическую деструкцию макромолекул. [c.7]


    Стойкость полимера к действию агрессивных сред зависит в первую очередь от наличия в структуре полимера реакционноспособных групп, а также связей. Таковыми являются кратные связи в линейной структуре полимера. Окисление кратных связей ви-нильных групп в боковых цепях приводит к структурированию, тогда как окисление кратных связей в главной цепи полимера вызывает его деструкцию . Легко окисляются и третичные [c.173]

    Пластификатор интенсивно вымывается из поливинилхлорида раствором едкого натра. При этом облегчается проникновение агрессивной среды в массу. полимера и ускоряется процесс его деструкции. Если лист непластифицированного поливинилхлорида толщиной 1 мм оказывается практически стойким к серной кислоте при 20° С вследствие весьма малой диффузии среды в полимер, то лист пластифицированного поливинилхлорида толщиной [c.177]

    Полиизобутилен нестоек к агрессивным средам, имеет низкую прочность (5—25 кГ/см ), большую хладотекучесть, липкость и склонность к деструкции. При совмещении с полиэтиленом или с сополимером СЭП его свойства резко улучшаются. Являясь по своей структуре аморфным каучукоподобным полимером, полиизобутилен при совмещении с указанными полимерами оказывает пластифицирующее действие. [c.130]

    Один из интересных в практическом отношении видов старения полимеров— деструкция под влиянием химически активных сред. В силу особенностей условий диффузии и протекания реакций в полимерной матрице при исследовании хемостойкости полимеров одним из узловых вопросов является выяснение состояния агрессивной среды в твердом полимере. Знание степени диссоциации и гидратации электролита в полимере необходимо для строгих кинетических расчетов реакций, происходяш их в полимере, а также для прогнозирования защитных свойств полимерных покрытий. [c.97]

    Знание закономерностей диффузии и сорбции агрессивных сред в полимеры позволяет подойти на количественном уровне к выяснению механизма деструкции твердого полимера в этих средах [18]. [c.97]

    Клеи на основе полибензимидазолов — это растворы полимера в диметилсульфоксиде или в других растворителях. Они термостабильны в течение 1000 ч при 260 °С и кратковременно выдерживают нагревание до 540 °С. Клеевые соединения стойки к воздействию влажного воздуха, тропического климата, агрессивных сред и криогенных температур. При—196 °С разрушающее напряжение при сдвиге равно 34 МПа, при —253 С оно составляет 40 МПа. Клеевые соединения достаточно стойки к термоокислительной деструкции и могут быть использованы при изготовлении сотовых конструкций. [c.83]

    Химическая стойкость материалов органического происхождения, кроме химического состава вещества определяется структурой материала. При оценке химической стойкости этих материалов важную роль играет изменение физико-механических свойств степени полимеризации (вулканизации), плотности проницаемости, склонности к деструкции под воздействием агрессивных сред и др. Кроме того, при оценке возможности применения того или иного полимера необходимо учитывать условия его эксплуатации — в качестве самостоятельного защитного покрытия или как непроницаемого подслоя под футеровку. Естественно, в последнем случае степень воздействия агрессивной среды на него снижается. [c.326]

    Природа активных центров. Как уже отмечалось, С. нолимеров и их превращение в присутствии стабилизаторов могут протекать по радикальному, ионному и молекулярному механизмам. Разрушение лшогих материалов при их эксплуатации в естественных атмосферных условиях, в космосе, при действии радиации часто связано с радикальными реакциями. Ионные процессы обычно имеют значение нри деструкции в агрессивных средах и, но-вндимому, в случае С. нек-рых полимеров, имеюи ,их в макромолекуле высокополярные группы. Молекулярные механизмы, как правило, не имеют существенного влияния на общее течение С. [c.240]

    Полимер Агрессипная среда, образующаяся при термической деструкции Акцептор агрессивной среды [c.344]

    При исследовании деструкции полимеров в среде жидких и газообразных агрессивных веществ Г. Е. Заиковым с сотр. была разработана теория разрушения полимеров под влиянием растворов агрессивного вещества, диффундирующего в полимер, и получены теоретические зависимости, позволяющие решить задачи прогнозирования изменения массы, механических свойств полимерных изделий, находящихся в агрессивной среде, длительности защитного действия полимерных покрытий и т. н. [101—103]. Были предложены методы модификации полимерных материалов путем контролируемого действия на них некоторых агрессивных веществ. [c.122]

    Вулканизаты склонны к окислительной деструкции, как и исходные полимеры. Отличие заключается лишь в скорости этого процесса, так как с увеличением количества поперечных мостиков между макромолекулами уменьшается содержание двой-пых связей в полимере и одновременно снижается скорость диффузии кислорода внутрь материала. Исключение составляет только эбонит, который не содержит ненасыщенных групп и потому об,падает высокой стойкост1.ю к действию озона, кислорода, растворов азотной кислоты и других агрессивных сред. [c.246]

    Изменение массы полимерного образца при его продолжительном экспонировании в агрессивной среде обычно рассматривается как признак протекания физических или химических процессов. Уменьшение молекулярной массы полимера обычно свидетельствует о химической деструкции увеличение массы во времени рекомендовано по ГОСТ 12020-72 использовать для расчета величины сорбции агрессивной среды и коэффициента диффузии. Однако гравиметрический метод целесообразно применять только для однокомпонентной агрессивной среды вследствие различия в скорости сорбции различных компонентов. Более правильно оценивать химическую стойкость полимерных материалов в агрессивных средах по кинетическим (константы скорости, энергии активации), диффузионным, сорбционным, механическим и другим показателям. [c.409]

    Повышение живучести полимера — его стабилизация — может достигаться как физическими, так и химическими методами. Физические методы стабилизации заключаются в изменении скорости транспорта (диффузии) реагирующих частиц. Так, например, для замедления процесса гидролитической деструкции полимеров необходимо снизить скорость диффузии агрессивной среды (воды, растворов кислот, оснований, солей) в полимерную матрицу. Химические методы стабилизации, как правило, связаны с добавками в полимер различных веществ, которые перехватьгаают активные частицы (в первую очередь осколки молекул — атомы, радикалы, ионы), ответственные за деструкцию полимеров. [c.108]

    Высокой химической инертностью и стойкостью к деструкции обладают фторопласты. Марки фторопластов Ф-4 Ф-4 НТД Ф-3 Ф-40 стойки ко всем средам, приведенным в таблице 33, значительную хим-стойкость демонстрируют и такие полиолефины, как ПЭНП ПЭВП и ПП, а также непластифицированный ПВХ. Несколько уступает им по химстойкости ПК и полистирольные пластики (ПС). Гетероцепные полимеры типа полиамидов склонны к гидролитической деструкции и активному набуханию вследствие своей гидрофильности. Нестоек к агрессивным средам конструкционный термопласт — полиформальдегид. [c.114]

    Четвертый этап — накопление продуктов метаболизма, образующихся в результате жизнедеятельности микроорганизмов на поверхностях металлоконструкций, — представляет значительную опасность. Несовершенные грибы продуцируют десятки органических кислот. Например, Aspergillus ig er образует щавелевую, фумаро-вую, янтарную, малеиновую, яблочную, лимонную, глюконовую, винную, молочную кислоты. Такие грибы относят к технофилам. Они встречаются при эксплуатации практически во всех климатических зонах. Органические кислоты повышают агрессивность среды, стимулируя процессы коррозии металлов и деструкцию полимеров, а также служат источником питания для других микроорганизмов. Некоторые грибы увеличивают щелочность среды илй воздействуют на материалы конструкций окислительными ферментами с выделением перекиси водорода и при разложении последней -- атомарным кислородом. К таким ферментам относятся оксидоредуктаза каталаза, [c.66]

    Описаны особенности окислительной деструкции кристаллических полимеров и эластомеров в нагруженном состоянии. Подробно рассмотрены надмолекулярные и конформационные эффекты в кинетике окисления ориентированных полиолефинов, а также вопросы их структурной стабилизации, долговечности и механизма разрушения в условиях интенсивного окисления. Показано, как изменяются структура и свойства полимеров под нагрузкой. Основное внимание уделено описанию закономерностей, наблюдаемых при одновременном воздействии на полимер механических напряжений и агрессивных сред. Дана классификация химических реакций полимеров по их чувствительности к растягиваюш,им и сжимающим нагрузкам. [c.254]

    Вода и водные растворы неорганических солей выступают в роли химически агрессивных сред по отношению к полимерам, содержащим легко гидролизующиеся связи. В воде происходит распад последних, снижается молекулярный вес полимера и ухудшаются его механические свойства Например, при действии воды или влажного воздуха на поликапроамид, поли-1,4-оксибутилен или полиадипинат происходит снижение молекулярного веса полимеров и тем большее, чем выше температура 1 . Деструкция может быть вызвана не только гидролизом, но и окислением, как это наблюдалось в случае поликапроамида. Вода вызывает деструкцию полиуретанов за счет омыления. [c.57]

    По коэффициентам диффузии можно в некоторых случаях определить долговечность полимеров в отсутствие коррозионного разрушения, а при его наличии количественно оценить роль концентраторов напряжения (трещин) и показать независимость процесса от скорости диффузии агрессивной среды . Разрушение материала, начинающееся с поверхности, очевидно, связано с потерей его поверхностным слоем несущей способности, т. е., если в этом слое образуются трещины, он не несет напряжения, которое распространяется на уменьшенное сечение нерастрескавшейся части образца (см. гл. IX). Если трепщн не образуется, а происходит деструкция или набухание, то также можно принять (в последнем слзгчае с некоторым приближением), что измененный слой не несет напряжения. В этих условиях процесс разрушения при постоянном начальном напряжении и воздействии агрессивной среды формально можно рассматривать как разрушение в отсутствие агрессивной среды (т. е. в воздухе), происходящее при непрерывно увеличивающемся среднем номинальном напряжении. В приближенном решении принимают, что разрушение имеет критический характер, т. е. начинается только при достижении критического напряжения. Для учета временной зависимости прочности используется критерий Бейли, заключающийся в том, что разрыв материала наступает, когда сумма относительных разрушений в нем становится равной 1. [c.110]

    Ползучесть ПФС при комнатной температуре исключительно мала. Хорошие физнко-механические свойства в течение многих месяцев термостарения на воздухе остаются на достаточно высоком уровне. ПФС на воздухе не горит. Кислородный индекс составляет 44 % по сравнению с 47 % для ПВХ [28]. ПФС отличает высокая стойкость к действию растворителей и агрессивных сред. Ниже 175°С органические растворители вообще не действуют на ПФС. Выше 175 °С они растворяются в ароматических углеводородах, ароматических простых эфирах п кетонах. После выдержки в течение 24 ч в углеводородах, тетрахлориде углерода, спиртах, кетоиах, таких органических кислотах, как уксусная и муравьиная кислота, 10 %-ной азотной, 37 %-ной соляной кислотах, 30 %-ном гидроксиде натрия, неорганических солях, при 93°С прочность практически не изменяется 10 %-ное уменьшение прочности при 93 °С происходит в пиридине, ацетонитриле и растворе карбоната натрия. В тех же условиях прн контакте с трихлорэтиленом прочность снижается на 30 %, в гипохлорите натрия— на 50 % Деструкция полимера за счет окисления сульфидных связей ири 93 °С за 24 ч происходит количественно в бромной воде, царской водке или 96 %-ной серной кислоте. [c.295]

    При механическом воздейств ии на высокомолекулярное вещество энерпия рас.кодуегся на деформацию валентных углов н на разрыв полимерной цепи. Эти процессы вызывают уменьшение -величины энергии активации реакций химического превращения полимеров, подвергающихся действию сил агрессивной среды. При действии механических онл деструкция протекает по радикальному ил и ионному механизму, или же оба механизма могут сочетаться. Образование полимерных радикалов можно ож Идать в кум случае, если полимеры обладают ковалентными связями  [c.71]


Смотреть страницы где упоминается термин ДЕСТРУКЦИЯ ПОЛИМЕРОВ В АГРЕССИВНЫХ СРЕДАХ: [c.256]    [c.6]    [c.38]    [c.140]    [c.140]    [c.140]    [c.260]    [c.421]    [c.6]   
Смотреть главы в:

Химическая стойкость полимеров в агрессивных средах -> ДЕСТРУКЦИЯ ПОЛИМЕРОВ В АГРЕССИВНЫХ СРЕДАХ




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Деструкция в агрессивных средах

Деструкция полимеров



© 2025 chem21.info Реклама на сайте