Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Охлаждение десорбцией

    Для извлечения паров растворителей используются вертикальные (обычно малогабаритные) или горизонтальные (крупногабаритные) адсорберы неподвижного слоя. Сам процесс, как правило, состоит из четырех основных стадий адсорбции, десорбции, осушки и охлаждения. Десорбция поглощенных растворителей обычно производится водяным паром. Степень извлечения растворителей составляет 95-99 %. [c.545]


    Адсорбция Охлаждение Десорбция Десорбция [c.210]

    Охлаждение Десорбция Десорбция Адсорбция [c.210]

    В качестве исходных предпосылок считают, что адсорбционный блок включает п идентичных вертикальных цилиндрических аппаратов диаметром В и высотой цилиндрической части Н, в одном из которых происходит адсорбция, а в остальных— вспомогательные операции (нагрев, охлаждение, десорбция и т. д.). [c.141]

    Десорбция и охлаждение Десорбция и охлаж- Адсорбция дение [c.209]

    Охлаждение Десорбция Десорбция [c.210]

    Адсорбция Охлаждение Десорбция [c.210]

    Работа каждого адсорбера состоит из следующих операций, указанных в порядке их последовательности поглощение (адсорбция), от-парка (десорбция), сушка, охлаждение. [c.99]

    Процесс десорбции осуществляется в массообменных аппаратах, называемых десорберами, конструктивно мало отличающихся от абсорберов. Абсорбент, освобожденный в процессе десорбции от целевых компонентов, называется регенерированным. Регенерированный абсорбент после охлаждения снова подается насосом на абсорбцию. Таким образом, получается замкнутый абсорбционно-десорбционный процесс. [c.71]

    При насыщении слоя в адсорбере 4, его переключают на цикл регенерации, а адсорбер 5 к этому времени должен быть готов к циклу адсорбции. Понятно, что время регенерации должно быть равно времени адсорбции либо быть меньше. Переключение адсорберов осуществляется, как правило, автоматически. Таким образом, для организации непрерывного производственного процесса требуется как минимум два совершенно одинаковых адсорбера. При выделении из сырьевого потока целевых компонентов с небольшим временем проскока иногда в схему установки включаются три адсорбера, при этом разделяются стадии десорбции (нагрева) и охлаждения. В этом случае один адсорбер находится в цикле адсорбции, второй адсорбер— в стадии нагрева и третий — в стадии охлаждения. После завершения цикла адсорбции сырьевой поток направляется в третий адсорбер, второй адсорбер вступает в стадию охлаждения, первый — в стадию нагрева. Переключение адсорберов осуществляется в соответствии с циклическим графиком работы. [c.94]

    Процесс адсорбционной депарафинизации нефтяных масел активированными углями успешно протекает при комнатной температуре и охлаждения не требует. При обработке легкокипящих продуктов охлаждение может сказаться положительно на показателях процесса. Нагревание же сказывается на адсорбционной депарафинизации отрицательно. Но десорбцию удержанных углем застывающих компонентов целесообразно проводить при повышенных температурах порядка 80—150°. [c.162]


    К сырью, подаваемому насосом 1, присоединяются свежий и циркулирующий водородсодержащий газ (нагнетается компрессором 2). После нагрева в теплообменниках (условно показано пунктирной линией, ведущей к печи 4) и змеевике печи 4 смесь поступает в адсорбер 6 с неподвижным слоем адсорбента, извлекающим из сырья н-парафины. По выходе из адсорбера денормализат в смеси с водородсодержащим газом и аммиаком (остатка от предшествующей операции — десорбции) охлаждается в теплообменнике 7. Пройдя далее конденсатор-холодильник 15, смесь разделяется в промывной колонне 16 на две части жидкую — охлажденный конденсат денормализата — и газопаровую. В верхней части колонны 16 пары аммиака поглощаются циркулирующей водой, поступающей далее в две последовательно соединенные колонны 17 и 21 для [c.97]

    Пенные процессы используются при абсорбции, десорбции, охлаждении нагревании, сушке, выпаривании, пылеулавливании и т. д. [c.415]

    Различают периодические и непрерывные процессы выделения газового бензина с помощью адсорбентов. Наибольшее распространение получил периодический процесс как более простой. Периодический процесс адсорбционного выделения газового бензина состоит из четырех этапов 1) адсорбция углеводородов на поверхности активированного,угля 2) десорбция, т. е. удаление адсорбированных углеводородов с поверхности адсорбента с помощью острого водяного пара 3) сушка угля горячим газом и 4) охлаждение адсорбента холодным газом. [c.167]

    Рассмотрим принципиальную технологическую схему установки, состоящей из четырех адсорберов (рис. 75). Исходный газ пропускают через адсорбер 1, где происходит поглощение тяжелых углеводородов. Выходящий сверху адсорбера 1 сухой газ нагревается в подогревателе 5 до 110—130° С и подается в низ адсорбера 3 для сушки адсорбента. До этого в адсорбере 3 проходила десорбция тяжелых углеводородов острым водяным паром. Холодный газ из холодильника 6 поступает для охлаждения угля в адсорбер 2, в котором перед этой операцией происходила сушка адсорбента. В адсорбере 4 протекает десорбция углеводородов острым перегретым до 200—250° С. водяным паром низкого давления (5—6 ат). [c.167]

    Некоторые данные, характеризующие остальные стадии процесса (десорбция, сушка, охлаждение адсорбента) приведены в работах [3, 5, 6]. [c.151]

    В схеме, приведенной на рис. IX.4, адсорбер может работать по трем технологическим циклам четырехфазному, трехфазному и двухфазному. При четырехфазном цикле последовательно проводятся адсорбция, десорбция, сушка и охлаждение адсорбента. Три последние стадии представляют собой процесс регенерации адсорбента, т. е. восстановления его способности поглощать целевые компоненты из исходной смеси. [c.151]

    Очищенный в результате адсорбции газ удаляется из адсорбера. По окончании фазы адсорбции линия подачи исходной смеси (вентилятор, фильтр, огнепреградитель, холодильник) переключаются на следующий адсорбер, в котором уже прошли стадии регенерации адсорбента (десорбция, сушка, охлаждение), а в первом аппарате начинается десорбция. [c.152]

    Продолжительность фаз процесса принято изображать в виде графиков или таблиц, называемых циклограммами. Ниже приводится циклограмма работы рекуперационной установки [1 ], состоящей из двух адсорберов и работающей по четырехфазному циклу (а — адсорбция, д — десорбция, С — сушка, о — охлаждение)  [c.152]

    Продолжительность остальных фаз цикла (десорбции, сушки и охлаждения адсорбента) рассчитывают, как правило, на основании экспериментальных данных или по эмпирическим уравнениям (ввиду сложности математического описания соответствующих процессов, обусловленной главным образом внутренней пористостью адсорбента). [c.154]

    Наибольшее практическое применение получили периодические адсорбционные процессы в аппаратах с неподвижным слоем адсорбента. Для обеспечения непрерывности осушки газа предусматриваются три или два адсорбера. В первом случае в одном адсорбере проводят адсорбцию, в другом — десорбцию поглош,енного из газа вещества, в третьем — охлаждение адсорбента. При совмещении в одном аппарате циклов регенерации (десорбции) и охлаждения адсорбента устанавливают два адсорбера. [c.287]

    Большинство технологических аппаратов отличаются следующим. В одних аппаратах происходит обдувка (обтекание) или продувка потоком жидкости или газа постоянных рабочих элементов, с помош,ью которых осуществляется технологический процесс. К таким элементам относятся пучки труб, стержней или пластин, а также слоевые или другие насадки, предназначенные для нагрева или охлаждения одной рабочей среды другой осадительные электроды электрофильтров тканевые, волокнистые, сетчатые, зернистые и другие фильтрующие перегородки сетчатые или решетчатые тарелки, слои кускового, зернистого,-кольцевого и другого насыпного материала, используемые для различных массообменных процессов (абсорбции, десорбции, ректификации, регенерации, катализа и др.). [c.6]


    В данной формулировке задачи оптимизации приняты следующие обозначения С — себестоимость адсорбера /С— капитальные вложения ti, та, тз, Т4 — продолжительности стадий адсорбции, десорбции, сушки и охлаждения, соответственно Я и — высота и диаметр адсорбера Е = 0,15 —нормативный коэффициент для химической промышленности. [c.14]

    Поскольку продолжительность фазы адсорбции значительно превышает суммарное время всех остальных фаз (десорбции, сушки и охлаждения), то им определяется число рабочих циклов за исследуемый промежуток времени, т. е. [c.174]

    Существенную роль в оптимизации динамических режимов адсорбционных аппаратов играет математическое описание процессов функционирования в стадиях процесса. Рассматривая стадии циклического адсорбционного процесса, легко показать, что стадии адсорбции, десорбции, сушки и охлаждения имеют математическое описание в виде системы Гурса — Дарбу [67]. Оптимальное управление такими системами рассмотрено в работах [73, 74]. [c.191]

    В аппарате, применяемом при непрерывной адсорбции, — ги-персорбере по мере прохождения в нем адсорбента осуществляются процессы адсорбции, десорбции и охлаждения. Десорбция поглощенных углеводородов производится при высокой температуре (250— [c.217]

    Блок абсорбции-десорбции (фракционирующий абсорбер). Во фракционирующем абсорбере контролируется и регулируется подача абсорбента в абсорбер II ступени, в зависимости от содержания С5 в уходящем сухом газе подача абсорбента в абсорбер-десорбер в зависимости от содержания Сз в уходящем сверху газе расход деэтаиизированной фракции н.к.— 140 °С и абсорбента, выходящего из абсорбера, в зависимости от содержания Сг в жидкой фазе уровень в кипятильнике фракционирующего абсорбента давление. Излишнее тепло в абсорбере снимается циркулияцией абсорбента через холодильники. Температура под тарелкой, с которой забирается абсорбент, регулируется подачей охлажденного абсорбента. Расход циркуляционного абсорбента регистрируется. [c.224]

    Четкость выделения зон адсорбции зависит от природы разделяемой смеси и адсорбента, а также от условий проведения процесса температуры, давления, скорости подачи разделяемого потока. При хорошей дифференциации зон адсорбции появление компонентов в выходном потоке строго последовательно при этом говорят о хроматографическом разделении исходной смеси. В промышленных условиях хроматографического разделения, как правило, не происходит, такая цель и не ставится обычно решается задача извлечения из исходной смеси одного или нескольких целевых компонентов. В последнем случае процесс ориентируется на извлечение ключевого компонента — наименее сорбируемого из целевых. Появление ключевого компонента в выходном потоке является сигналом о необходимости прекращения процесса адсорбции. В силу обратимости процесса адсорбции адсорбированные компоненты можно удалить из слоя адсорбента, т. е. десорбировать. На процесс десорбции особое влияние оказывает повышение температуры слоя адсорбента и создаиие потока газовой (паровой) фазы — десорбирующего (регенерационного) потока. В результате осуществления процесса десорбции получают целевые компоненты в виде продукта и регенерированный (освобожденный от адсорбированного вещества) адсорбент. Слой адсорбента, таким образом, последовательно переходит из цикла адсорбции в цикл регенерации. Цикл регенерации, в свою очередь, подразделяется на стадию нагрева (собственно десорбция) и стадию охлаждения (снижение температуры слоя адсорбента до температуры адсорбции). В соответствии с этими стадиями адсорбционного процесса путем последовательного переключения перерабатываемого потока с одного адсорбционного аппарата на другой организуется непрерывный производственный процесс. [c.93]

    После периода десорбции слой адсорбента подвергается охлаждению. Период охлаждения занимает Ув перио/а адсорбции. Газ на охлаждещш подается в том же направле1ши, что и при осушке, это позволяет сохранить наибольшую по1 лотитель-пую способность выходного слоя адсорбента. Охлаж/.ение считается законченным, если температура охлаждающего газа па выходе превышает температуру осушаемого газа на 20—30 °С. [c.151]

    Следующей разновидностью открытого цикла является цикл с использованием сухого отбензиненного газа для охлаждения адсорбента, для горячей регенерации используется входящий газ. Для предотвращения уноса с потоком отбензиненного газа требуется более тщательная десорбция целевых компонентов в цпкле нагрева. Эта схема требует дополнительных энергетических затрат. [c.168]

    Технологический процесс получения винилацетилена методом димеризации ацетилена делится на следующие основные стадии а) приготовление и регенерация катализатора б) компримирова--ние возвратного ацетилена в) димеризацня ацетилена г) охлаждение и осушка реакционного газа д) адсорбция е) предвари-тельнбе газовыделение и десорбция ж) ректификация, отмывка и осушка, моновинилацетилена з) получение ацетальдегида  [c.62]

    В установках продуцирующего предкатализа гидрирование протекает на железном плавленом катализаторе при 550—600°С и высоком давлении. В этом случае гидрирование СО, СО2 и О2 происходит в колонне одновременно с синтезом аммиака. На рис. 2 приведена схема моноэтаноламиновой очистки и каталитического метанирования азотоводородной смеси. Конвертированный газ под давлением 2,8 МПа при температуре около 300°С поступает в выносные кипятильники /7, в которых из отработанного моноэтаноламина при кипении происходит окончательная десорбция СО2. По выходе из кипятильников конвертированный газ охлаждается в сепараторе-конденсаторе 15 и холодильнике 12. Пройдя сепаратор 13, газ поступает в нижнюю часть абсорбционной колонны 16. Сверху колонна орошается свежим 20 /о-ным раствором моноэтаноламина (МЭА). Раствор МЭЛ подается в колонну центробежным насосом 14, предварительное охлаждение происходит в аппаратах 5 и 6. По выходе из абсорбционной колонны очищенная от СО2 азотоводородная смесь проходит сепаратор 7 и подогревается в теплообмепиике 8 и кипятильнике /7 до 300°С. Далее газ поступает сверху в реактор метаниро- [c.49]

    Насадочные колонны широко применяют для проведения процессов абсорбции, десорбции, ректификации, а также для очистки, охлаждения, увлажнения, осушки газов на многих химических предприятиях. Объединенные для проведения технологического процесса в систему из последовательно соединенных колонн эти аппараты являются обычно основным оборудованием при производстве кислот, минеральных удобрений и других продуктве. [c.5]

    Адсорбционный метод заключается в избирательном поглощении тяжелых углеводородов твердыми высокопористыми веществами, например активированным углем. Эффективность поглощения в значительной степени определяется величиной поверхности адсорбента. На современных газобензиновых заводах применяются активированные угли, поверхность которых достигает 1200—1600 лtVг. Десорбция углеводородов из насыщенного адсорбента осуществляется при помощи перегретого пара при температуре 125—140°. Десорбированные углеводороды, а также пары воды направляются сначала на конденсацию, а затем на стабилизацию и газофракцинировку. Регенерированный адсорбент подвергается сначала сушке воздухом или отбензинен-ным газом, а затем охлаждению. [c.31]

    Для переработки попутных газов широко используют абсорбционно-ректификационный метод. Принцип этого метода состоит в том, что газ промывают в абсорбере под давлением и при охлаждении абсорбентом — поглотительным маслом (при этом извлекаются в основном углеводороды Сз—С5), а затем отгоняют растворенные в абсорбенте газы, которые после конденсации подвергают дальнейшей ректификации. Регенерированный абсорбент охлаждают и возвращают в абсорбер. Благодаря применению абсорбента сильно снижается парциальное давление углеводородов Сз—Сб и для их отделения от низших гомологов не требуются столь высокое давление и низкая температура, как при конденса-и[1онпо-ректификационном способе. Это обусловливает более высокую экономичность абсорбционно-ректификациоиного метода. Когда процесс ведут с высокой степенью извлечения пропапа, при абсорбции неизбежно поглощается и значительное количество этана, с которым на стадии десорбции может быть увлечено много высших углеводородов. Во избежание их повторной абсорбции — десорбции поглощение высших углеводородов совмещают в одном аппарате с отпариванием легких углеводородов из насыщенного абсорбента. [c.26]

    Как видно из табл. 4 (стр. 34), такие комплексы с бутадиеиом более стойки, чем комплексы с олефинами, и при обработке фрак-цти поглотительным раствором прн минус 10—0°С извлекается в основном бутадиен-1,3. При нагревании до 40 °С происходит десорбция связавшихся олефинов с некоторой частью бутадиена прп 70—75°С выделяют чистый бутадиен, а поглотительный растпор после охлаждения возвращают на сорбцию. Процесс проводят в протнвоточном каскаде аппаратов с мешалками каждый аппарат снабжен сепаратором и насосом. Свежий поглотительный раствор падают в первый аппарат, а бутиленовую фракцию — в последний, чем создают наиболее благоприятные условия для сорбции разбавленной фракции свежим поглотительным раство ром, а концентрированную фракцию абсорбируют уже насыщенным раствором. [c.52]

    Для выделения и очистки ацетилена используют его свойство лучше, чем другие компоненты реакционных газов, растворяться в некоторых агентах в метаноле или ацетоне при охлаждении до —70 "С и особенно в диметилформамиде и К-метилпирролидоне при комнатной температуре. Обычно газ вначале освобождают от сажи, затем от лучше растворимых ароматических соединений и гомологов ацетилена (форабсорбция), после чего поглощают ацетилен. Очистку его ведут путем ступенчатой десорбции. [c.84]

    Один из наиболее эффективных и универсальных методов очистки и разделения газовых и жидких сред — адсорбционный метод, связанный с механизмом физико-химического взаимодействия адсорбента и адсорбата. Однако успешное внедрение его в промышленность зависит, в частности, от эффективности эксплуатируемых и проектируемых адсорбционных установок, совершенствования действующих процессов, инженерных методов расчета равновесия систем адсорбент — адсорбат, кинетики в отдельном зерне адсорбента и динамики макрослоя адсорбентов, конструктивных решений и методов оптимизации циклических адсорбционных процессов. Основными особенностями циклических адсорбционных процессов являются их многостадий-ность (стадии адсорбции и десорбции целевых компонентов, стадии сушки и охлаждения, адсорбентов, т. е. стадии, взаимно влияющие одна на другую), разнообразие типов технологических схем, различие энергозатрат для проведения стадий процесса. Вследствие этого важным звеном разработки циклических адсорбционных процессов как на этапе проектирования, так и на этапе промышленной эксплуатации служит выбор оптимальных вариантов аппаратурного оформления процессов, режимов проведения различных стадий процесса для конкретных условий применения. Выполнение указанных задач полностью определяет технико-экономические оценки выбираемых вариантов. [c.4]

    Сложность оптимизации промышленного процесса рекуперации заключается в необходимости учитывать все факторы, влияющие на оптимальный вариант <гехнологического цикла в целом. Если для расчета основных стадий адсорбции и десорбции, можно использовать зависимости, учитывающие многочисленные и разнообразные аспекты — равновесие, кинетику, динамику и т. д. этих явлений, то для расчета экономической эффективности цикла в целом этого недостаточно. Необходимо связать все затраты, связанные с проведением процесса рекуперации, воедино с учетом как основных, так и вспомогательных фаз сушки, охлаждения, разделения (конденсации) и т. п. [c.173]

    Основным типом адсорбционных установок в промышленности являются установки периодического действия, в которых адсорбер со стационарным слоем адсорбента после окончания стадии адсорбции переключается на десорбцию. Например, в получивших за последнее время широкое распространение короткоцикловых безнагревных установках (КВУ) [3] процесс осушки, очистки или разделения газов происходит в быстро переключающихся со стадии адсорбции на стадию десорбции адсорберах, причем температуры на стадиях адсорбции и десорбции одинаковы. Исключение промежуточных стадий нагрева и охлаждения адсорбента обеспечивает высокую экономическую эффективность данных установок. [c.236]

    Термическая десорбция. Температура десорбции на 100-200 0 выше температуры адсорбции. Тепло подводят к слою цеолита и отводят от него прямым способои (контакт со средой - твплоноситела.м) и не прямшл (через трз чатый теплообменник). Достоинство этого метода десорбции - высокая рабочая емкость адсорбента недостаток - большая длительность цикла, вызванная необходимостью нагрева ж охлаждения больших масс адсорбента и аппаратуры. Поэтому термическая десорбция наиболее целесообразна для выделения из потока малого количества низкомолекулярного адсорбируемого вещества, когда можно проводить десорбцию через относительно большие интервалы времени. [c.178]


Смотреть страницы где упоминается термин Охлаждение десорбцией: [c.22]    [c.98]    [c.94]    [c.224]    [c.169]    [c.6]    [c.12]    [c.130]   
Смотреть главы в:

Холодильная техника Кн. 1 -> Охлаждение десорбцией




ПОИСК





Смотрите так же термины и статьи:

Десорбция



© 2025 chem21.info Реклама на сайте