Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические и физические свойства редкоземельных элементов

    Такова краткая характеристика основных физических свойств редкоземельных элементов. Теперь можно перейти к описанию их важнейших химических особенностей. Однако прежде следует разобраться в вопросе, который имеет важное значение для более глубокого понимания своеобразия лантаноидов. Мы имеем в виду явление лантаноидного сжатия. [c.125]

    К редким землям относят 14 элементов с порядковыми номерами от 58 (Се) до 71 (Ьи) включительно. В то время как химические и многие физические свойства редкоземельных элементов очень сходны между собой, их спектры имеют лишь одну общую черту — большую сложность в остальном они сильно отличаются один от другого. С этими свойствами связаны большие трудности разделения и анализа редких земель. Электронные конфигурации некоторых из этих элементов и в настоящее время не могут считаться вполне надежно установленными. Мы можем утверждать лишь, что в группе редких земель про- [c.410]


    Таким образом, изучение химических и физических свойств редкоземельных элементов и, как результат, их расположение в одной клетке периодической системы свидетельствовали о нивелировке индивидуальности указанных элементов. Между тем именно признание индивидуальности, самобытности элементов, даже при наличии периодического закона, установившего взаимосвязь между всеми элементами, являлось достоянием химии XIX века. Вот почему в 80-х годах Менделеев высказывался против применения... многими... периодического закона для индукции единства материи, элементы образующей 2. [c.58]

    ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ [c.83]

    В целом и физические и химические свойства редкоземельных элементов служат отражением своеобразной природы семейства лантаноидов. Более детально они рассмотрены в специальных монографиях и нам нет нужды говорить о них. Теперь мы перейдем к некоторым особенностям лантаноидов, связанным уже со строением их ядер. [c.134]

    В течение многих лет одним из наиболее трудных химических процессов считался процесс разделения близких но физическим и химическим свойствам редкоземельных элементо . Хроматографический метод позволил разрешить эту проблему, которая особенно назрела в связи с необходимостью разделения продуктов деления тяжелых ядер. [c.355]

    Анализ редкоземельных элементов. Ввиду большого сходства химических свойств редкоземельных элементов, обычные методы количественного анализа для них неприемлемы. Следовательно, все точные методы анализа должны базироваться на физических свойствах этих элементов. Известно пять основных критериев средний атомный вес, магнитная восприимчивость, спектр поглощения, рентгеновский спектр и дуговой спектр. Радиохимические методы могут оказаться полезными в тех случаях, когда имеются соответствующие радиоизотопы, применяющиеся в качестве меченых атомов. Метод определения среднего атомного веса крайне полезен при последовательных операциях разделения, поскольку он не требует специального оборудования. В обычной практике используется соотношение между окислом и оксалатом с последующим определением оксалата титрованием перманганатом. [c.80]

    Редкоземельные элементы обладают весьма близкими химическими свойствами и при отделении их от других элементов практически всегда выделяются в виде суммы соединений всех редкоземельных элементов (например, оксалатов или фторидов). Для разделения и выделения отдельных элементов этой группы используют различные химические и физико-химические методы. Для определения отдельных редкоземельных элементов в их смеси наряду с некоторыми физическими методами используют спектрофотометрические методы. [c.200]


    Помимо сходства с лантаном лантаноиды чрезвычайно близки между собой по физическим и химическим свойствам. Иногда лантаноиды вместе со скандием, иттрием и лантаном объединяют обш,им названием редкоземельные элементы. [c.446]

    Разделение редкоземельных элементов. Метод ионного обмена имеет огромное значение для анализа смесей аналогичных веществ, что наиболее ярко иллюстрируется на примере разделения ионов редкоземельных элементов [I, 3]. Ряд редкоземельных элементов включает элементы с атомными номерами 57—71 и близкие им по свойствам элементы с номерами 39 (иттрий) и 21 (скандий). Все они образуют трехвалентные положительно заряженные катионы, и их химические и физические свойства настолько схожи, что выделение из них отдельных элементов давно считается наиболее трудной проблемой. Почти полное разделение достигалось при помощи классических методов, главным образом посредством чрезвычайно трудоемкой многократной фракционной кристаллизации. [c.272]

    На первый взгляд, по физическим и химическим свойствам гадолиний ничем не отличается от других редкоземельных металлов. Он — светлый, незначительно окисляющийся на воздухе металл — по отношению к кислотам и другим реагентам ведет себя так н е, как лантан и церий. Но с гадолиния начинается иттриевая подгруппа редкоземельных элементов, а это значит, что на электронных оболочках его атомов должны быть электроны с антипа-раллельными спинами. [c.144]

    Поскольку для редкоземельных элементов — вследствие близости их свойств — химический метод контроля, за редким исключением (для церия), невозможен, налицо необходимость использовать метод физический, иначе освоение редкоземельного континента неизбежно должно приостановиться. Будет найден такой метод — начнется новый этап в истории редких земель. [c.20]

    Встанем и мы на точку зрения открывателей иллиния. На первый взгляд их правота несомненна, хотя бы потому, что на основании менделеевской таблицы (до ее физической интерпретации) химический элемент между неодимом и самарием не мог быть предсказан. Предсказан так, как это сделал сам Менделеев в отношении десятка с лишним других неизвестных элементов. Что помогло Менделееву предсказать такие элементы, как галлий, германий, скандий Во-первых, непоколебимая уверенность в неизбежности существования в некоторых рядах таблицы пробелов , соответствующих неоткрытым еще элементам. Во-вторых, прекрасное знание свойств элементов — соседей по группе и по периоду. Там, где химическая природа окружения сама была мало изучена, Менделеев воздерживался от конкретизации достаточно сказать, что о предполагаемых эка-цезии (франций), эка-йоде (астатин), дви-теллуре (полоний), эка- и дви-марганце (технеций и рений) автор периодического закона говорит довольно неуверенно — должны существовать и, по сути дела, ничего более. С редкими землями обстояло еще хуже. Как читатель уже знает, в ряду редких земель весьма продолжительное время царил хаос. Неизвестно, сколько их неясно, как разместить их в таблице необъяснимо, почему они уникально близки по свойствам,— где уже тут пытаться предсказывать существование неизвестного элемента между неодимом и самарием, когда никто не может дать полной гарантии, что эти элементы не являются смесью. Закон Мозели все поставил на свои места известно число редкоземельных элементов, неясен только вопрос с элементом № 72. Пробел в их ряду между нео- [c.153]

    Актиноиды образуют аналогичные сульфидные фазы. Переходы /—й, характерные для лантаноидов, типичны и для актиноидов с той лишь разницей, что более высокое главное квантовое число 5/-электронов актиноидов вызывает большую энергетическую стабильность соответствующих /-конфигураций, а также образующихся в результате /— -переходов /-конфигураций. Вследствие этого принципиальных различий в характере химических связей и в формировании физических и химических свойств в сульфидах различных элементов лантаноидов и актиноидов не наблюдается. Поэтому физические свойства сульфидов редкоземельных металлов приведены в гл. IV не применительно к каждому металлу, а даны в обобщенном виде. [c.15]

    Физические и химические свойства лантана и лантаноидов. Редкоземельные элементы — металлы серебристо-белого цвета (неодим и празеодим с желтоватым оттенком) в порошкообразном состоянии имеют цвет от серого до черного [58]. Большая часть металлов кристаллизуется в плотной гексагональной решетке, за исключением церия, иттербия, самария и европия (табл. 33). [c.135]

    В монографиях, посвященных редкоземельным элементам и их соединениям, отмечается сходство их химических и физических свойств [1—4]. Не случайно все 15 элементов (Ьа, Се, Рг, N(1, Рт, 5т, Ей, Сё, ТЬ, Оу, Но, Ег, Ти, УЬ, Ьи) помещены в одну клетку в шестом периоде периодической системы Д. И. Менделеева. [c.7]

    Кроме упомянутых областей промышленного использования редких земель, ими широко пользуются в исследовательской работе. Вследствие уникальной атомной структуры этой группы элементов, многие их физические и химические свойства изменяются в зависимости от их кристаллической структуры и атомного строения. Почти все физические и химические свойства этих элементов определяются самыми удаленными от центра электронами. Именно эти удаленные от ядра электроны вызывают химические связи и перемещаются, когда происходят химические процессы. Редкоземельные элементы и элементы, подобные им, обычно имеют 3 электрона на внешней орбите, поэтому их валентность равна трем. Электронные структуры этих элементов в том виде, в каком они существуют в твердых солях, показаны в табл. 1. Начиная с церия, неполная внутренняя оболочка заполняется электронами. Эта внутренняя оболочка предохраняется заполненными оболочками 5х и 5р, которые расположены еще дальше от центра атома, и, следовательно, эти внутренние электроны играют ничтожную роль для сил сродства, удерживающих атомы в молекулах. Внутренние электроны обычно являются непарными и придают редкоземельным металлам и солям парамагнитные свойства. Даже будучи в твердом состоянии, внутренние электроны так хорошо защищены от внешних связующих электронов, что при первых грубых расчетах обусловливаемые ими энергетические состояния могут быть истолкованы теоретически точно таким же образом, как если бы [c.373]


    Редкоземельные металлы (РЗМ), их сплавы и соединения за последние годы завоевали большое признание в науке и технике. Физики, физико-химики, металловеды и металлурги посвящают многие исследования изучению физических и физико-химических свойств и технологии получения этих интересных веществ. Благодаря своим выдающимся свойствам, в частности рекордным магнитным характеристикам, существенным для изготовления постоянных магнитов, некоторые типы интерметаллических соединений редкоземельных элементов (РЗЭ) прокладывают себе широкую дорогу в электронику, радио- и электротехнику. [c.5]

    Производство чистого бериллия и других металлов нуждается в простых и высокочувствительных методах количественного определения в них многих примесей, в том числе элементов группы редких земель и, в частности, гадолиния. Из многих химических и физических свойств редкоземельных элементов наиболее перспективными для целей анализа представляются их оптические свойства, в первую очередь, эмиссионные спектры и спектры люминесценции кристалло-фосфбров, содержащих указанные элементы в качестве активаторов. Эмиссионный спектральный метод микрокодпчествен-пого (порядка 10 %) определения Сс1, Еп и Зт в ТЬ, и. Во, В1 и 7г был разработан А. Н. Зайделем, Н. И. Калитеев-ским и др. [1]. Однако этот метод требует обогащения. Данные о возможностях люминесцентного определения гадолиния в бериллии отсутствуют. [c.344]

    Электронные конфигурации. Почти все физические и химические свойства редкоземельных элементов находят логическое объяснение в строении их электронных конфигураций. Скандий, иттрий, лантан и актиний первые члены соответственно первого, второго, третьего и четвертого переходных рядов элементов. Другими словами, для каждого из этих элементов характерно начало внутренней надстройки, при которой устойчивая восьмиэлек- [c.32]

    Периодический закон Д. И. Менделеева был общепризнан, хотя имелись и некоторые аномалии. Так, согласно периодическому закону, свойства элементов находятся в периодической зависимости от их атомных весов, и поэтому не может быть двух элементов с одинаковым атомным весом и разными химическими) физическими свойствами. Однако это наблюдается у кобальта и никеля порядок расположения по возрастающему атомному весу нарушен для теллура и иода. Д. И. Менделеев предполагал, что атомный вес теллура не верен, но это не подтвердилось, и теллур должен быть помещен в периодической системе до иода, хотя у него атомный вес больше. Кроме того, было неясно положение в периодической системе VIII группы и редкоземельных элементов, а также не нашлось места для инертных газов, открытых в самом конце XIX века. [c.91]

    Современные методы позволяют получать иониты, физические и химические свойства которых соответствуют специфическим условиям их применения. Например, полиамяновые смолы обладают способностью к анионному обмену, а сульфосмолы — к катионному. В СССР выпускают иониты с различными наименованиями (марками) — КУ-2, КБ-4 и ряд других. Иониты используются в самых различных областях науки и техники при каталитическом крекинге в производстве бензина, для разделения редкоземельных элементов, в лабораториях аналитической химии, при анализе вытяжек из растений, в хроматографии и в ряде других областей. Особенно широко используются иониты для водоочистки. С помощью ионного обмена из воды практически можно удалить любые ионы, а следовательно, выделить разнообразные примеси вплоть до содержащихся в воде некоторых производств солей различных металлов и радиоактивных веществ. [c.190]

    Редкоземельные элементы открыты в 1794 г. академиком Петербургской академии наук И. Я. Гадолином в минерале иттербите, который в честь ученого был переименован в гадолинит. Для РЗЭ характерно исключительное сходство основных химических и физических свойств (кроме свойств их ядер), в связи с чем в Периодической системе Д. И. Менделеева они помещены в одну клетку, которая ранее была отведена лантану. [c.190]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Авторов открытия галлия, кaJдия и германия, а также Б. Браунера, усовершенствовавшего периодический закон (место редкоземельных элементов), Д. И. Менделеев называл укрепи-телями периодического закона . Открытие периодического закона и его укрепление означало не только установление взаимосвязи свойств химических элементов, но и открытие важнейшего критерия для точного определения самого понятия элемент . Недаром Д. И. Менделеев начинает свою классическую статью о периодическом законе с определений соответствующих понятий Понятия простое тело и элемент нередко смешиваются между собою, подобно тому, как до О. Лорана и Ш. Же рара смешивались названия частица, эквивалент и атом, а между тем для ясности химических идей эти слова необходимо ясно различать. Простое тело есть вещество, металл или металлоид с рядом физических признаков и химических реакций. Ему свойственен частичный вес... Оно способно являться в изомерных и полимерных формах и отличается от сложных тел только тем, что в простом теле все атомы однородны. [c.158]

    Казалось бы, какие могут быть сомнения Физика объяснила природу редкоземельных элементов. От физических законов зависит, что на протяжении четырнадцати элементов от церия до лютеция происходит формирование глубинной 4/-иодоболочки, которая не влияет (или почти не влияет) на химические свойства элементов. Физика дала надежный теоретический фундамент, на котором покоится здание таблицы элементов, где каждый элемент имеет свою собственную квартиру (правда, за отдельными исключениями). Исключениями являются клетка лантана, которая превратилась в общежитие для пятнадцати химических индивидуальностей, и клетки элементов конца периодической системы, для которых жилищный вопрос еще не урегулирован окончательно,— но о них чуть позже. [c.190]

    Технология переработки реэкстрактов циркония (и гафния) предусматривает осаждение кристаллогидратов тетрафторида циркония, их сушку и последуюш,ую дегидратацию, сублимационный аффинаж тетрафторида циркония и металлотермическую плавку сублимированного тетрафторида циркония с кальцием. Требования к химической чистоте циркония и зависяш им от нее физическим свойствам настолько высоки, что металлургическая промышленность при использовании стандартного оборудования не обеспечивает их выполнение. Например, цирконий, полученный металлотермическим восстановлением в графитовых печах, содержит некоторое количество карбидов циркония, вследствие чего сильно меняется ударная вязкость металла и изготовленные из него оболочки тепловыделяющих элементов ядерного реактора не соответствуют техническим требованиям. Поэтому технология кальцийтермического восстановления циркония из тетрафторида циркония была модифицирована на основе прямого индукционного нагрева шихты ZrF4 -Ь 2Са с использованием технологии холодного тигля . Эта технология была в дальнейшем применена для производства других редких и редкоземельных элементов. [c.688]

    В первоначальной таблице Менделеева было помещено 63 химических элемента. Сейчас их известно 105. Из 42 элементов, открытых после 1869 г., Менделеев предсказал существование по крайней мере 20. В частности, Менделеев предусмотрел места, где сейчас расположены франций, скандий, галлий, германий, гафний, полоний, астат, технеций, рений, радий, актиний, протактиний и некоторые редкоземельные элементы. Он также разместил сам инертные газы, существо-ваниг которых вначале не предполагал. Свойства некоторых элементов Менделеев предсказал с удивительной точностью. Это предсказание было основано на правиле атом-аналогии, установленном самим Менделеевым. Сущность этого правила заключается в том, что физические константы (включая и атомные массы) элемента определяются как среднеарифметические значения из констант его ближайших четырех соседей. На основе того же принципа Менделеев предсказывал наиболее существенные химические свойства. Для названий не открытых еще элементов Менделеев предложил приставки, заимствованные из санскритского языка. Например, экабор, экакремний, экацезий, экаиод, экамарганец, двимарганец и т. д. [c.38]

    Книга представляет собой вторую часть работы автора, посвященной прогнозам Д. И. Менделеева в атомистике. Если в nepBoii книге освещались менделеевские прогнозы, касавшиеся неизвестных элементов и их свойств, то во второй речь идет прежде всего о предвидениях точных значений атомных весов уже известных элементов и о последующем подтверждении этих предвидений, когда атомные веса предположительно изменялись в полтора-два раза прн одновременном изменении валентности элемента и его места в системе (гл. I—III) при этом в гл. III выделены прогнозы двухмасштабных изменений атомных весов, когда одновременно сочетаются их крупные изменения с мелкими. Затем говорится о предвидении значения физических и химических свойств уже известных элементов и периодичности их изменений в зависимости от атомного веса элементов (гл. IV). После этого рассматриваются вопросы, касаюпщеся предугадываний Менделеевым мелких изменений атомных весов (на несколько атомных единиц) без изменения валентности элементов и их места в системе (гл. V). Особо выделены предположительные решения Менделеевым вопроса о так называемой аномалии периодической системы элементов, которую мы обозначаем № 1, так как под № 2 в третьей книге будет значиться другая ее аномалия , связанная с размещением редкоземельных элементов. В заключение (гл. VI) разбирается короткая таблица элементов как оптимально соответствующая целям выражения места элемента в периодической системе, поскольку это его место служит общей теоретической основой всех вообще прогнозов Менделеева в атомистике. [c.5]

    Периодический закон Д. И. Менделеева был общепризнан, хотя в нем имелись и некоторые аномалии. Так, согласно периодическому закону, свойства элементов находятся в периодической зависимости от их атомных весов, и поэтому не может быть двух элементов с одинаковым атомным весом и разными химическими и физическими свойствами. Однако это наблюдается у кобальта и никеля порядок расположения по возрастающему атомному весу нарушен для теллура и иода. Д. И. Менделеев предполагал, что атомный вес теллура не верен, но это не подтвердилось, и теллур должен быть помещен в периодической системе до иода, хотя у него атомный вес больше. Кроме того, было неясно положение в периодической системе VIII группы и редкоземельных элементов, а также не нашлось места для инертных газов, открытых в самом конце XIX века. Очевидно, в структуре атомов элементов должно быть что-то, обусловливающее периодичность, на что атомный вес не давал ответа. Первым крупным успехом в разрешении этого вопроса было наблюдение характеристических рентгеновских лучей. Если мишень бомбардировать быстрыми электронами, то наблюдается обычно два разных вида рентгеновских лучей. Один вид дает непрерывный спектр, подобный изображенному на рис. 3-3. Конец спектра, которому соответствует наибольшая энергия, определяется разностью потенциалов ускоряющего электрического поля. На непрерывный спектр часто накладывается характеристический спектр длины волн линий характеристического спектра оказались зависящими от материала мишени и не зависели от потенциала поля, ускоряющего электроны до тех пор, пока энергия электронов была больше некоторой величины. На рис. 3-4 изображен рентгеновский спектр мо- [c.88]

    Поскольку актиний трудно выделить из природных источников, исследователи давно пришли к выводу, что химические свойства актиния очень близки к химическим свойствам лантана и редкоземельных элементов. Актиний, как и редкоземельные элементы, образует не растворимые в воде фторид, гидроокись, оксалат, карбонат и фосфат. Физические свойства галогенидов актиния, насколько они изучены, очень похожи на свойства соответствующих галогенидов редких земель. Все те чистые соединения актиния, которые были приготовлены и охарактеризованы, изострук-турны с соответствующими соединениями лантана. Кристаллохимические исследования показали, что размеры иона Ас наибольшие из всех известных трехзарядных ионов радиус его равен 1,10 А. Ионный радиус лантана равен 1,06 А, небольшое различие ионных радиусов (0,04 А), наряду с тем фактом, что оба иона имеют аналогичную электронную структуру инертного газа, в равной мере обусловливает сходство химических свойств. Заключение о подобии актиния и редких земель подтверждается его поведением при соосаждении с носителями. Из табл. 2.2 очевидно, что химические свойства Ас , о которых можно судить на основании наблюдаемого поведения при соосаждении с носителями, действительно [c.19]

    Вероятно, самой важной формой, в которой уран используется в реакторах, является металл. Для работы многих типов реакторов необходима высокая концентрация атомов урана, а металл обладает наибольшей плотностью. Физические и особенно химические свойства урана таковы, что требуют значительной изобретательности исследователей для того, чтобы разработать совершенные промышленные процессы получения металла. При повышенных температурах уран реагирует с большинством обычных тугоплавких материалов и металлов. Тонкоизмельчен-ный уран реагирует при комнатной температуре со всеми компонентами атмосферного воздуха, за исключением благородных газов. К счастью, в противоположность титану и цирконию, введение небольших количеств кислорода или азота не оказывает серьезного неблагоприятного действия на механические свойства металла. Поскольку металлический уран используется в ядерных реакторах, урановые топливные элементы должны быть свободны от самых незначительных загрязнений, поглощающих нейтроны, например бора, кадмия или редкоземельных элементов и в равной степени от ощутимых количеств многих других элементов. Требования чистоты в этом случае являются более строгими, чем для обычных стандартов, установленных для других металлов. Хилшки и металлурги разрешили эти весьма трудные проблемы за очень короткое время. [c.138]

    Возможность применения хроматографии в обоих названных областях объясняется тем, что цель ее применения состоит в разделении смесей . При очевидном препаративном значении метода, состоящем в получении чистых соединений, в аналитической химии предварительное количественное разделение смесей позволяет в последующем идентифицировать компоненты и определить их содержание простыми (даже неспецифическими) химическими, физико-химическими или физическими методами. Естественно, что использовать иногда сравнительно нродолн ительные хроматографические приемы целесообразно лишь в тех случаях, когда анализ смеси трудно или даже невозможно произвести обычными способами. Это касается прежде всего смесей элементов с очень близкими свойствами, в подавляющем бо,льшииство случаев находящихся в одной и той же группе периодической системы Д. И. Менделеева (щелочные и щелочноземельные элементы, редкоземельные элементы с иттрием и скандием, следующие за ними пары элементов, почти идентичные вследствие ланта-нидного сжатия — цирконий и гафний, ниобий и тантал, молибден и вольфрам галогены, платиновые металлы, элементы подгруппы >келеза и пр.). Поэтому представляется рациональным рассмотреть работы [c.135]


Смотреть страницы где упоминается термин Химические и физические свойства редкоземельных элементов: [c.7]    [c.88]    [c.49]    [c.53]    [c.48]    [c.114]    [c.90]   
Смотреть главы в:

Редкоземельные элементы и их соединения -> Химические и физические свойства редкоземельных элементов




ПОИСК





Смотрите так же термины и статьи:

Свойства редкоземельных элементов

Физические н химические свойства

Химический элемент редкоземельные

Элемент химический

Элементы редкоземельные

Элементы свойства



© 2025 chem21.info Реклама на сайте