Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биосинтез компонентов нуклеиновых кислот

    Нуклеиновые кислоты — важнейшие компоненты (составные части) всех живых клеток. Эти вещества регулируют передачу наследственных признаков в ряду поколений. Им принадлежит ведущая роль в процессе биосинтеза белков. [c.22]

    Полисахариды, наряду с белками и нуклеиновыми кислотами, являются необходимыми компонентами любой живой клетки. Если в области изучения биосинтеза и биологических функций нуклеиновых кислот и белка достигнуты в последнее время значительные успехи, молекулярная биология полисахаридов остается по существу белым пятном. Между тем многие проблемы иммунохимии, межклеточных взаимодействий, оплодотворения, клеточной дифференцировки, по-видимому, не могут быть удовлетворительно разрешены без понимания факторов, определяющих биологическую специфичность полисахаридов. Важным звеном, необходимым при обсуждении этих факторов, являются сведения о макромолекулярной структуре полисахаридов и других углеводсодержащих биополимеров. Между тем это направление исследований, к сожалению, развивается пока крайне слабо. Следует отметить, что изучение макромолекулярной структуры полисахаридов принципиально сложнее, чем в случае белков и нуклеиновых кислот. Это связано с огромным разнообразием возможных типов связей между мономерными единицами и существованием разветвлений, что ставит качественно новые задачи при определе- [c.635]


    Нитраты — основной источник азота для большинства зеленых растений и грибов. Биологические процессы, в ходе которых почвенные нитраты превращаются в аммиак, необходимый для биосинтеза белков, нуклеиновых кислот и других компонентов клетки, называют восстановительной ассимиляцией нитрата. Нитраты могут также использоваться вместо кислорода в качестве конечного акцептора электронов при анаэробной генерации энергии в некоторых бактериях. Продуцирование энергии этим способом называют нитратным дыханием или восстановительной диссимиляцией нитрата. В некоторых видах бактерий могут реализовываться процессы обоих этих типов, причем относительное значение [c.288]

    Таким образом, синтез нуклеиновых кислот, мономерными единицами которых являются мононуклеотиды, будет определяться скоростью синтеза пуриновых и пиримидиновых нуклеотидов синтез последних в свою очередь зависит от наличия всех составляющих из трех компонентов. Источником рибозы и дезоксирибозы служат продукты превращения глюкозы в пентозофосфатном цикле. Пока не получены доказательства существенной роли пищевых пентоз в синтезе нуклеиновых кислот. Фосфорная кислота также не является лимитирующим фактором, поскольку она поступает в достаточном количестве с пищей. Следовательно, биосинтез нуклеиновых кислот начинается с синтеза азотистых оснований (точнее, мономерных молекул —мононуклеотидов). [c.470]

    БИОСИНТЕЗ КОМПОНЕНТОВ НУКЛЕИНОВЫХ КИСЛОТ [c.435]

    Анаболизм — ферментативный синтез сравнительно крупных клеточных компонентов (полисахаридов, нуклеиновых кислот, белков, жиров) из простых предшественников, который ведет к увеличению размеров молекул, к усложнению их структуры. Последовательность ферментативных реакций, приводящих к биосинтезу тех или иных клеточных компонентов, называют анаболическими путями. [c.96]

    Непременным компонентом любой живой клетки наряду с белками являются также нуклеиновые кислоты, имеющие важнейшее биологическое значение. С ними тесно связаны деление клеток, биосинтез белка, передача наследственной информации. [c.635]

    Нуклеиновые кислоты представляют собой главные компоненты генетического аппарата клетки. Генетическую функцию они выполняют в процессе биосинтеза белка. [c.13]

    Нуклеиновые кислоты составляют существенную небелковую часть сложного класса органических веществ, получивших название нуклеопротеинов (см. главу 2) последние являются основой наследственного аппарата клетки хромосом. Белковые компоненты нуклеопротеинов подвергаются многообразным превращениям, аналогичным метаболизму белков и продуктов их распада—аминокислот, подробно рассмотренному в главе 12. О нуклеиновых кислотах, их структуре и функциях в живых организмах в последнее время накоплен огромный фактический материал, подробно рассмотренный в ряде специальных руководств и монографий. Помимо уникальной роли нуклеиновых кислот в хранении и реализации наследственной информации, промежуточные продукты их обмена, в частности MOHO-, ди- и трифосфатнуклеозиды, выполняют важные регуляторные функции, контролируя биоэнергетику клетки и скорость метаболических процессов. В то же время нуклеиновые кислоты не являются незаменимыми пищевыми факторами и не играют существенной роли в качестве энергетического материала. Далее детально рассматриваются (помимо краткого изложения вопросов переваривания) проблемы метаболизма нуклеиновых кислот и их производных, в частности пути биосинтеза и распада пуриновых и пиримидиновых нуклеотидов, современные представления о биогенезе ДНК и РНК и их роли в синтезе белка. [c.469]


    Анаболизм, называемый также биосинтезом,-это та фаза метаболизма, в которой из малых молекул-предшественников, или строительных блоков , синтезируются белки, нуклеиновые кислоты и другие макромолекулярные компоненты клеток. Поскольку биосинтез-это процесс, в результате которого увеличиваются размеры молекул и усложняется их структура, он требует затраты свободной энергии. Источником этой энергии служит распад АТР до ADP и неорганического фосфата. Для биосинтеза некоторых клеточных компонентов требуются также богатые энергией водородные атомы, донором которых является NADPH (рис. 13-5). Катаболические и анаболические реакции протекают в клетках одновременно, однако их скорости регулируются независимо. [c.380]

    В результате учебник построен, как и первое издание, из десяти глав. После гл. 1, представляющей собой биологическое введение к курсу, в гл. 2 излагаются данные об основных химических компонентах живой материи. Эта глава, как гл. 3, посвященная пространственной структуре биополимеров и роли ее в биологических функциях белков и нуклеиновых кислот, подверглись лишь незначительному редактированию. Изложение вопроса о ферментах в гл. 4—6 несколько перекомпоновано. В основном изменение состоит в том, что вопрос о механизме действия ферментов перенесен в конец изложения учения о ферментах, поскольку он в равной мере относится и к матричному биосинтезу и поэтому не должен ему предшествовать. Кроме того, в гл. 6, посвященной вопросу о механизме действия ферментов, введены параграфы о рибозимах и о динамических аспектах ферментативного катализа, поскольку именно эти аспекты становятся горячей точкой современного учения о ферментативном катализе. [c.7]

    Значительное число ферментов с довольно разнообразным механизмом действия содержат в качестве кофактора ионы цинка. Среди них уже упоминавшаяся карбоангидраза. Цинк входит в качестве обязательного компонента во многие ферменты, участвующие в биосинтезе.нуклеиновых кислот — РИК- и ДНК-поли-меразы, а также в некоторые ферменты, катализирующие гидролиз пептидных связей. [c.66]

    Настоящий справочник отличается от имеющихся тем, что в нем не только описана химическая структура и биологическая роль основных биохимических компонентов живой клетки, но и охарактеризованы пути метаболизма данных компонентов в живом организме. Он состоит из семи разделов, в каждом из которых в алфавитном порядке дана соответствующая тepминoлorиЯi В разделах Белки , Нуклеиновые кислоты , Углеводы , Липиды приведены структурные формулы и показана биологическая роль биохимических компонентов клетки, описаны и проиллюстрированы схемами основные пути распада и синтеза важнейших биологически активных молекул. В разделе Ферменты содержатся сведения о типах ферментативного катализа, скорости ферментативных реакций, единицах измерения ферментативных реакций, о принципах классификации ферментов, регуляции биосинтеза и активности ферментов. Раздел Витамины включает характеристику отдельных представителей водо- и жирорастворимых витаминов. Особое внимание уделено ферментным реакциям, в которых участвуют витамины, приведены данные о содержании витаминов в продуктах питания, о суточной потребности человека в витаминах, о применении витаминов и витаминных препаратов в медицинской практике, сельском хозяйстве и т. д. В разделе Гормоны -освещены достижения по биохимии пептидных, белковых и стероидных гормонов. Рассмотрены вопросы биосинтеза, механизм действия гормонов на молекулярном уровне, взаимодействие гормонов с [c.3]

    Изучение биосинтеза нуклеиновых кислот сводится к изучению нескольких отдельных процессов — биосинтеза пуриновых и пиримидиновых колец, возникновения углеводного компонента и затем биосинтеза самих полинуклеотидов. [c.166]

    НК — важнейшие компоненты всех живых клеток. Их значение заключается в том, что они являются веществами, ответственными за хранение и передачу наследственных признаков (генетической информации) в ряду поколений, и играют ведущую роль в процессе биосинтеза белка. Исследования в области нуклеиновых кислот связаны с именами Э. Фишера, П. А. Левина, А. Р. Тодда, Дж. Уотсона, Р. А. Крика. [c.612]

    Методы, собранные в этих двух книгах, весьма разнообразны и охватывают почти все стороны исследований этой важнейшей грунны соединений. Здесь можно найти методы выделения и анализа отдельных компонентов нуклеиновых кислот (пуриновых и пиримидиновых оснований, нуклеозидов и нуклеотидов), методы выделения, разделения и анализа олигонуклеотидов, изолирования отдельных клеточных органелл, выделения и фракционирования нуклеиновых кислот (ДНК и РНК), а также изолирования их суммарной фракции для различного рода исследований, способы идентификации нуклеиновых кислот, методу. модификации их молекул, методы изучения их синтеза как in vivo, так и in vitro, методы изучения нуклеиновых кислот в связи с процессом биосинтеза белка и, наконец, методы изучения биологических свойств нуклеи1говых кислот, в том числе их иммунологических свойств. [c.5]


    В этом уравнении — предел, к которому стремится р, по мере повышения остаточной концентрации лимитирующего рост вещества S. Иерусалимский Н. Д. теоретически доказал правомерность формулы Моно, показав, что рост микробной биомассы может быть описан уравнением простой ферментативной реакции. Объясняется это тем, что скорость таких комплексных реакций, как биосинтез, определяется скоростью отдельных ферментативных реакций, протекающих медленнее остальных и определяющих общую скорость процесса. Н. Д. Иерусалимский исходил из того, что обязательной предпосылкой роста является биосинтез жизненно важных компонентов протоплазмы, в первую очередь, белков и нуклеиновых кислот, составляющих более половины микробной биомассы. [c.35]

    Всем этим и определяется прогрессивное значение принципа изучения биологических процессов на молекулярном уровне, который все шире используется в биохимии, биофизике и физиологии и уже привел ко многим большим успехам и открытиям, касающимся роли отдельных органоидов клетки и нуклеиновых кислот в биосинтезе аминокислот, белков и других компонентов протоплазмы, механизма действия ферментов и других физиологически активных соединений клетки, цикличности биологических процессов и др. [c.11]

    Значение мононуклеотидов исключительно велико. Во-первых, мононуклеотиды, особенно нуклеозидполифосфаты, являются коэнзи-мами многих биохимических реакций они участвуют в биосинтезе белков, углеводов, жиров и других веществ. Большая роль их связана с наличием запаса энергии, аккумулированной в их полифосфатных связях. Известно также, что по крайней мере некоторые нуклеозидполифосфаты в ничтожных концентрациях оказывают действие на сложные функции, например деятельность сердца. Во-вторых, мононуклеотиды являются структурными компонентами нуклеиновых кислот— высокомолекулярных соединений, определяющих синтез белков и передачу наследственных признаков (они изучаются в биохимии). [c.403]

    В круговороте веществ на земле углеводы занимают промежуточное место между неорганическими и органическими соединениями. Они являются первичными продуктами фотохимического восстановления двуокиси углерода — главного и, вероятно, единственного пути биосинтеза органических веществ в современных геологических условиях. Моносахариды в результате последующих превращений образуют полисахариды — необходимые компоненты любой живой клетки. С другой стороны, при распаде моносахаридов выделяется энергия, требуемая для синтетических процессов в организме, и образуются продукты, являющиеся исходными веществами для биосинтеза других полимеров живой клетки белков, нуклеиновых кислот и липидов. Все сказанное определяет большое разнообразие биохимических реакций моносахаридов и их центральное лоложение в метаболизме живой клеткк [c.363]

    Своеобразие структуры воды обусловливает особые свойства растворенных в ней вещестн, в частности высокомолекулярных соединений — белков, нуклеиновых кислот, полисахаридов, которые функционируют только в водной среде. На Земле все основные механизмы реакций, связанных с жизнедеятельностью (биосинтез, ферментативный катализ и пр.), складывались в процессе эволюции с непосредственным участием воды как одного из компонентов. [c.22]

    Дальнейшее развитие биологии и медицины почти невозможно без применения методологических принципов современной биологической химии. Установление способов хранения и передачи генетической информации и принципов структурной организации белков и нуклеиновых кислот, расшифровка механизмов биосинтеза этих полимерных молекул, а также молекулярных механизмов трансформации энергии в живых системах, установление роли биомембран и субклеточных структур, несомненно, способствуют более глубокому проникновению в сокровенные тайны жизни и выяснению связи между структурой индивидуальных химических компонентов живой материи и их биологическими функциями. Овладение этими закономерностями и основополагающими принципами биологической химии не только способствует формированию у будущего врача диалектикоматериалистического понимания процессов жизни, но и дает ему новые, ранее недоступные возможности активного вмешательства в патологические процессы. Этими обстоятельствами диктуется необходимость изучения биологической химии студентами медицинских институтов. [c.9]

    Пурином называют конденсированную гетероциклическую систему, построенную сочленением пиримидинового и имидазольного колец. Пурины играют важную роль в живой природе, так как, наряду с уже упоминавшимися пиримидиновыми нуклеотидами, участвуют в биосинтезе нуклеиновых кислот. Сушествуют всего два нуклеиновых основания пуринового ряда аденин 6.737 и гуанин 6.738. Их рибозиды и дезоксирибозиды называются соответственно аденозин 6.739 и дезоксиаденозин 6.740, гуанозин 6.741 и дезокси гуанозин 6.742. Они объединяются под общим названием пуриновых нуклеози юв. Фосфаты их именуются нуклеотидами. Во всей живой природе распространены метаболически связанные с ними инозин 6.743 и ксантин 6.744. Кроме того, в состав РНК входят так называемые минорные нуклеиновые основания, как пуриновые, так и пиримидиновые. Их количественное содержание в РНК незначительное, но структурное разнообразие велико. В качестве примера можно назвать деазапурин квеуин 6.745, найденный как минорный компонент РНК многих организмов, в том числе у млекопитающих. [c.590]

    Важными компонентами цитоплазмы являются рибосомы, ферменты, рибонуклеиновые кислоты (РНК). Рибосомы представляют собой мембранные структуры 16 X 18 нм, состоящие на 40% из белка и на 60% из РНК. Они являются центрами синтеза белка. Одним из доказательств этого служит концентрация антибиотика хлорамфеннкола на рибосомах. Механизм действия хлорамфеннкола на бактерии состоит в подавлении синтеза белка в бактериальных клетках, чувствительных к этому антибиотику. Бактериальная клетка содержит около 10 000 рибосомальных частиц. Матричная и транспортная РНК участвуют в синтезе белков. Ферменты катализируют реакции синтеза и распада. При обработке лизоцимом бактериальных клеток протопласт приобретает сферическую форму и сохраняет жизнеспособность. В протопластах происходят важнейшие биохимические процессы биосинтез белка и нуклеиновых кислот, [c.26]

    В очистке промышленных сточных вод принимает участие большинство микроорганизмов, способных к гетеротрофному биосинтезу, ибо только они могут разрушать органические вещества. Известно, что гетеротрофы в процессе эволюции приспособились к использованию в природе тех естественных органических веществ, с которыми они встречаются в нормальных экологических условиях. Это вещества растительного и животного происхождения разной сложности углеводы от гексоз и пентоз до целлюлозы, пентозанов, лигнина и хитина азотистые вещества от аминокислот до полипептидов и прочных фибриллярных белков — кератина и коллагена, нуклеиновые кислоты и нуклеопротеиды липиды и их компоненты от глицерина и жирных кислот до сложных растительных и животных масел, жиров и жироподобных веществ — фосфолипидов, липопротеи-дов и т. д. У значительно меньшего числа микроорганизмов существует приспособленность к потреблению углеводородов нефти, озокерита, битуминозных сланцев, сапропелитов и фенолов. Они в течение длительного периода времени, охватывающего жизнь многочисленных поколений микробов, в нормальных экологических условиях вступали в контакт с этими веществами, совершенно непригодными для всего органического мира ни в [c.100]

    Однако значение углеводов далеко не исчерпывается их ролью как главных веществ при создании органических соединений в процессе фотосинтеза, как важных пищевых веществ и сырья для многих видов промышленности. Как было показано в последние годы, передача наследственных признаков, а также биосинтез белка — химической основы г изни — происходят при участии так называемых нуклеиновых кислот (см. том II). Структурными компонентами последних являются мононуклеотиды — производные углеводов. Лабильность углеводных компонентов как раз и создает большие трудности при выделении и синтезе нуклеотидов. [c.622]

    Превращения веществ в клетке (обмен веществ, или метаболизм), в результате которых из сравнительно простых предшественников, например глюкозы, жирных кислот с длинной цепью или ароматических соединений, образуется новое клеточное вещество, можно ради простоты подразделить на три основные группы. Сначала питательные вещества расщепляются на небольшие фрагменты (распад, или катаболизм), а затем в ходе реакций промежуточного обмена, или амфиболизма, они превращаются в ряд органических кислот и фосфорных эфиров. Эти два пути переходят незаметно один в другой. Многообразные низкомолекулярные соединения-это тот субстрат, из которого синтезируются основные строительные блоки клетки. Строительными блоками мы называем аминокислоты, пуриновые и пиримидиновые основания, фос-форилированные сахара, органические кислоты и другие метаболиты — конечные продукты цепей биосинтеза, иногда длинных. Из них строятся полимерные макромолекулы (нуклеиновые кислоты, белки, резервные вещества, компоненты клеточной стенки и т.п.), из которых состоит клетка. Эти два этапа биосинтеза клеточных веществ-синтез строительных блоков и синтез полимеров-составляют синтетическую ветвь метаболизма, или анаболизм (рис. 7.1). [c.214]

    Биосинтез нуклеотидов. Пуриновые и пиримидиновые нуклеотиды-это те структурные блоки, из которых синтезируются нуклеиновые кислоты нуклеотиды входят также в состав многих коферментов и участвуют в активации и переносе аминокислот, сахаров, компонентов клеточной стенки и липидов. Синтез всех пуриновых нуклеотидов идет общим путем, разветвляющимся лишь на стадии инозиновой кислоты, после чего образуется либо адениловая, либо гуаниловая кислота. 06-1ЦИМ является и путь синтеза пиримидиннуклеотидов. Здесь разделение происходит на уровне уридиловой кислоты. [c.256]

    Для непрерывного окисления ацетил-КоА в цикле лимонной кислоты (ЦЛК) необходимо постоянное присутствие оксалоащ тата. Это обычно обеспечивается циклической природой самого процесса однако из сказанного следует также, что если компоненты цикла — все или только некоторые из них — расходуются на синтетические процессы (биосинтез аминокислот, пуринов, пиримидинов, пентозных предшественников нуклеиновых кислот и коферментов, порфиринов и т. д.), то должны существовать какие-то способы для возмещения расхода. У животных эти анаплеротические цепи реакций обеспечиваются реакциями карбоксилирования, посредством которых происходят взаимопревращения пирувата и дикарбоновых кислот цикла. Еще один процесс, в котором используется предварительное карбоксилиро-вапие,— это превращение пировиноградной кислоты в пропионовую кислоту при брожении у пропионовокислых бактерий. Этот процесс служит как бы обходным путем для того, чтобы преодолеть препятствие в виде пируватки-пазной реакции на пути синтеза углеводов. В конечном итоге оксалоацетат легко декарбоксилируется ферментативным и неферментативным путем. В превращении Сд С1 = С4 участвуют главным образом следующие реакции  [c.298]

    Конарев (1959) развивает взгляды, согласно которым нуклеиновые кислоты прнни.мают участие в образовании специализированных структур небелковой природы, в том числе таких безазотистых продуктов специализированного обмена, как компоненты клеточных стенок. Он установил, что синтез компонентов клеточных стенок в различных гистологических элементах связан с обменом нуклеиновых кислот. В частности, ему удалось доказать, что влияние света на биосинтез компонентов клеточных стенок сопряжено с изменением в синтезе нуклеиновых кислот. Связь нуклеиновых кислот с образованием специализированных структур небелковой природы доказывается им еще и тем, что формированию их обычно предшествует скопление цитоплазмы, богатой РНК. Так, например, во всех случаях образованию вторичного утолщения клеточной стенки предшествует скопление цитоплазмы, богатой РНК. Автор приводит многочисленные доказательства также в пользу значения ядра и ДНК в образовании клеточных стенок. Конарев считает, что участие нуклеиновых кислот во всех этих процессах, несомненно, осуществляется во взаимодействии с конституционными белками, в непосредственной связи с цитоплазматическими и ядерными структурами. [c.118]

    Фосфаты играют две ключевые роли в биологии. Во-первых, они служат структурными элементами ряда биологических компонентов например, сахарофосфатный остов нуклеиновых кислот или отложения фосфата кальция костей и зубов. Вторая, более интересная роль связана спереносом энергии. По-видимому, фосфат представляет собой универсальную энергетическую разменную монету в живых организмах. Сокращение мышц, перенос ионов через мембраны против градиента концентрации и очень большое число реакций биосинтеза — эти потребляющие энергию процессы осуществляются благодаря переносу фосфорильных групп (РОз) от высокоэнергетических акцепторов к изкоэнерге-тическим. [c.624]

    В главе 30 указывалось, что нук-леопротеиды представляют собой белок, связанный с нуклеиновыми кислотами. Имеющие большое значение нуклеиновые кислоты ДНК и РНК являются важными компонентами клеточных ядер, хромосом и вирусов нуклеиновые кислоты участвуют в биосинтезе белков. В процессе пищеварения белок отщепляется от нуклеиновых кислот и подвергается дальнейшему расщеплению до аминокислот. Нуклеиновые кислоты под влиянием рибонуклеазы и дезоксирибонуклеазы сначала образуют нуклеотиды, которые затем гидролизуются нуклеотидазами с образованием фос- фатов и нуклеозидов. Нуклеозиды /всасываются через слизистую обо- [c.384]

    Таким образом, в течение практически целого века (начиная с конца XIX и заканчивая серединой XX в.) было доказано, что нуклеиновые кислоты являются важнейшими компонентами всех клеток живых организмов. Установлено, что с участием нуклеиновых кислот происходит биосинтез белков, являющихся материальной основой всех жизненных процессов, и в конечном счете формируются фенотипические признаки всех организмов. Информация, определяющая особенности первичной структуры белков, записана в молекулах ДНК, с помощью которых и передается от родительских клеток к дочерним. Молекулы РНК служат незаменимыми и обязательными участниками самого механизма биосинтеза белков и других биопроцессов. [c.265]


Смотреть страницы где упоминается термин Биосинтез компонентов нуклеиновых кислот: [c.260]    [c.218]    [c.221]    [c.310]    [c.312]    [c.255]    [c.522]    [c.522]    [c.70]    [c.430]   
Смотреть главы в:

Химия биологически активных природных соединений -> Биосинтез компонентов нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте