Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расщепление пептидных и дисульфидных связей

    Таким образом, пептидные цепи могут быть сшиты дисуль-фидными мостиками. Расщепление пептидной связи происходит при гидролизе, дисульфидная же связь разрывается путем восстановления  [c.395]

    Химотрипсин — наиболее хорошо изученный протеолитический фермент. Он катализирует гидролитическое расщепление пептидной (или сложноэфирной) связи, в образовании которой принимают участие фенилаланин, тирозин или триптофан. Образование химотрипсина происходит в поджелудочной Железе первоначально образуется неактивный химотрипсиноген (зимоген) — резервная форма фермента. Основной компонент, химотрипсиноген А, представляет собой полипептидную цепь из 245 аминокислотных остатков и 5 дисульфидных мостиков. Активация и образование активного о -химотрипсина осуществляются сложным путем. После триптического расщепления связи Аг -11е последовательно одии за другим из молекулы отщепляются дипептиды 8ег -Аг и ТЬг -А5п . В результате одноцепочечный предшественник переходит в трехцепочечную молекулу фермента. Цепи А, В и С химотрипсина соединены исключительно дисульфидными связями. Рис. 3-32 показывает пространственную модель химотрипсина, установленную на основе рентгеноструктурных данных. [c.408]


    Внутримолекулярное связывание боковых радикалов двух остатков цистеина создает дисульфидный мостик, который обычно способствует упорядоченности конформации. Многие обладающие важными биологическими функциями полипептиды имеют первичную структуру, включающую дисульфидные мостики между остатками цистеина, которые отделены друг от друга в полипептидной цепи несколькими атомами, что приводит к образованию многочленных колец. Влияние дисульфидных мостиков на конформацию полипептидной цепи, находящейся между двумя остатками цистеина, легко видеть по возрастанию неупорядоченности, происходящему при расщеплении дисульфидных групп. Лизоцим после расщепления дисульфидных связей теряет около 50 % своих а-спиральных участков [27], однако расщепление полипептидной цепи в двух точках (по остаткам метионина) приводит к трем пептидным фрагментам, соединенным дисульфидными мостиками и ли- [c.433]

    Затем в результате реакции с цианидом образуется тиоцианат, который, в конце концов, дает тиоциановую кислоту и остаток дегидроаминокислоты. Последний легко гидролизуется в разбавленной кислоте или щелочи. Таким образом, в целом эта реакция, по-видимому, может применяться для специфического расщепления белков сначала по дисульфидным связям с последующим расщеплением пептидных связей, образованных цистином или цистеином. [c.400]

    Таким образом, результаты этих опытов показывают, что конформация молекулы, обусловливающая ее ферментативную активность, полностью определяется последовательностью аминокислот в полипептидной цепи. Для того чтобы остатки цистеина соединились правильно, пе нужно никакого специального фермента. Образование специфических дисульфидных связей требуется, по-видимому, лишь для стабилизации активной конформации, а не для ее возникновения. В результате восстановления и последующего окисления рибонуклеазы образуется продукт, имеющий ту же ферментативную активность, ультрафиолетовый спектр, характеристическую вязкость, дисперсию оптического вращения и те же иммунологические свойства, что и нативный фермент. Пептидные карты, получаемые после ферментативного расщепления этих двух веществ, также идентичны. Если 6l.i расположение дисульфидных связей в нативной и реконструированной рибонуклеазе было различным, пептиды, содержащие такие связи, не могли бы попасть, на одинаковые места карты. [c.279]

    При проведенном недавно исследовании этой реакции установлено, что любая пептидная связь дает некоторую окраску, но определенные последовательности аминокислот, и притом не обязательно содержащие ароматические остатки, дают более интенсивную окраску, чем другие они и обусловливают главным образом окраску, развиваемую белком. Предварительный полный гидролиз альбумина снижает плотность окраски более чем на /з. Расщепление дисульфидных связей в инсулине путем окисления надмуравьиной кислотой снижает общую интенсивность окраски примерно на /з [4]. [c.266]


    Поскольку растворы цианидов обладают высокой щелочностью, реакции деструкции, протекающие в такой среде, сильно осложняют использование этого реагента. В сильно щелочной среде может происходить даже полное расщепление пептидных и дисульфидных связей, а также может иметь место разложение образующегося из дисульфида тиоцианата. Если одновременно с расщеплением дисульфидных мостиков окислять образующиеся сульфгидрильные группы цистеина снова в цистин, то иногда удается полностью превратить всю исходную серу, входящую в состав цистиновых звеньев, в тиоцианатную [276]. [c.406]

    РАСЩЕПЛЕНИЕ ПЕПТИДНЫХ И ДИСУЛЬФИДНЫХ СВЯЗЕЙ [c.435]

    Природа предоставила нам редкую возможность установить структуру фермент-субстратных комплексов трипсина и химотрипсина с полипептидами, создав множество ингибиторов-полипептидов, которые очень прочно связываются с трипсином и химотрипсином, поскольку зафиксированы в той конформации, которую субстрат принимает при связывании [52]. Эти полипептиды не гидролизуются при физиологических условиях, так как подвижность аминогруппы, которая высвобождается при расщеплении пептида, ограничена и она не может диффундировать из активного центра фермента. При устранении ограничений в панкреатическом ингибиторе трипсина путем восстановления дисульфидного мостика в полипептидной цепи пептидная связь между Ьуз-15 и А1а-16 легко расщепляется трипсином [53]. Структура трипсина, его комплекса с основным панкреатическим ингибитором трипсина и свободного ингибитора была установлена при разрешении 1,4, 1,9 и 1,7 А соответственно [54]. Полученные данные относятся к числу наиболее точных — положение атомов известно с точностью 0,1—0,2 А. Эти и другие исследования дали следующую информацию относительно связывания субстратов [55—65]. [c.39]

    Химотрипсиноген образован одной полипептидной цепью, состоящей из 245 аминокислот. Цепь связана пятью дисульфидными мостиками. Химотрипсиноген практически полностью лишен ферментативной активности. Однако он превращается в активный фермент, когда под действием трипсина расщепляется пептидная связь между аргинином-15 и изолейцином-16 (рис. 8.3). Образующийся активный фермент, называемый л-химотрипсином, действует затем на другие молекулы я-химо-трипсина, В результате удаления еще двух пептидов образуется стабильная форма фермента - а-химотрипсин. Дополнительное расщепление при превращении л-химо-трипсина в а-форму в сущности излишне, поскольку я-химотрипсин сам обладает полной ферментативной активностью. Поразительная особенность данного процесса [c.153]

    Эластические свойства кератина волос и шерсти, ио данным ронтге-ноструктурного анализа, зависят от того, что в нерастянутом белке полипептидная цепь закручена сама на себя. Растягивание развертывает петли и образуег цепь из аминокислотных единиц с периодом идентичности 3,3 А, сравнимым с таковым для фиброина. Кератин богат цистином, который образует дисульфидные поперечные связи между пептидными цепями. Шерсть может быть модифицирована, а волосы завиты путем восстановления меркаптаном для расщепления части поперечных связей и обратного окисления для образования других поперечных связей. Восстановление, которое в случае завивки производится смачиванием раствором тиогликолевой кислоты, приводит к денатурированному белку с менее жесткой структурой, допускающей растяжение и перестройку молекулы. Появление и исчезновение сульф-гидрильных групп можно проследить при помощи нитропрусоидной пробы. [c.668]

    С-терминальный домен В, имеющий молекулярную массу около 39000 дальтон, обладает лектиноподобным действием он способен специфически связываться с поверхностным неидентифицированным рецептором животной клетки. Связывание белка с поверхностью клетки приводит к тому, что он, по непонятному пока механизму, внедряется в цитоплазматическую мембрану, и там происходит про-теолитическое расщепление междоменной пептидной связи и одновременное восстановление дисульфидной связи в результате белок распадается на фрагмент А и фрагмент В. N-терминальный фрагмент А, имеющий молекулярную массу 21150 дальтон, проваливается в цитоплазму. Именно этот фрагмент и является ингибитором белкового синтеза в клетке. Он оказался высокоспецифическим ферментом, осуществляющим АДФ-рибозилирование одного аминокислотного остатка в EF-2. После такого АДФ-рибозилирования нормальные функции EF-2 нарушаются. Ввиду каталитического характера действия фрагмента А достаточно одной молекулы токсина, чтобы модифицировать все молекулы EF-2 и убить клетку. [c.215]

    Тиализильная пептидная связь, получающаяся в результате восстановления дисульфидных связей и 5-аминоэтилирования образовавшегося остатка цистеина, также расщепляется трипсином (см. разд. 23.3.3), так как ее боковая группа является изостериче-ской боковой группе Lys. Природа R имеет второстепенное значение, хотя связи Arg-Pro и Lys-Pro не разрываются. Известны и многие другие протеиназы, которые по своей специфичности напоминают трипсин. Например, известно, что тромбин разрывает участки Arg-Gly и Arg-Ser в фибриногене — одном из своих природных субстратов, однако для эффективного катализа необходима еще и связь фермента со вторым участком молекулы субстрата. Поэтому тромбин находит лишь ограниченное применение при расщеплении пептидных связей с целью изучения последовательности, хотя в случае секретина он разрывает связь Arg-Asp, в то время как три связи Arg-Leu остаются незатронутыми. Действие трипсина можно ограничить так, чтобы он разрывал либо по остаткам аргинина, либо по остаткам лизина. Модификация белка малеиновым ангидридом приводит к защищенным е-амино-группам лизиновых остатков схема (27) . [c.275]


    Все проферменты поджелудочной железы активируются по сходному механизму для превращения в активную форму необходимо расщепление пептидной связи, образованной остатком аргинина или лизина около начала пептидной цепи предшественника. Именно это расщепление и производится трипсином или иным протеолитическим ферментом, осуществляющим активацию. Механизм действия всех таких ферментов, по-видимому, одинаков в основе его лежит гидролиз точно определенной пептидной связи, производимый в соответствии со специфичностью гидролизирующего фермента, причем необходима специфичность именно такого типа, как та, которой обладает трипсин. В трипси-ногене быка, например, разрывается связь между 6- и 7-амино-кислотными остатками, в химотрипсиногене — при действии трипсина — между 15-м и 16-м. Активация трипсиногена сопровождается отщеплением от белка гексапептида при активировании же химотрипсиногена фрагмент не отщепляется, так как его первый остаток остается соединенным с основной частью молекулы дисульфидной связью. [c.94]

    После расщепления дисульфидных связей белок либо распадается на составляющие его цепи (подобно инсулину), либо разворачивается, образуя одну длинную цепь (подобно рибонуклеазе). Как известно, не все белки содержат цистин однако имеются и другие возможности сшивки цепей, например при помощи фосфо-эфирных связей. Кроме того, следует иметь в виду, что трехмерная структура белка, несомненно, приводит к взаимодействию боковых цепей аминокислот друг с другом или с какими-либо участками пептидной цепи. Важную роль в образовании уникальной структуры белка, обеспечивающей его биологическую функцию, играют прочно связанные с ним вещества небелковой природы, такие, как металлы, пигменты и сахара. Молекула гемоглобина человека состоит из четырех пептидных цепей (двух а- и двух -цепей), соединенных с четырьмя геминовыми группами, которые и являются переносчиками кислорода. Структуры обеих цепей гемоглобина (по Брауницеру и др. 1 ]) и миоглобина [2, 3] приведены на фиг. 50. Интересно, что, согласно недавно опубликованной структуре субъединицы белка вируса табачной мозаики [4], в цепи из 158 аминокислотных остатков отсутствуют поперечные связи (фиг. 51). [c.113]

    Боргидриды. Количественное восстановление дисульфидных связей рибонуклеазы, трипсиногена, лизоцима и Р-лактоглобулина было осуществлено при действии боргидрида натрия в 8 М растворе мочевины при температуре 41° и р] около 10 [278] при pH 8,5 количественное восстановление провести труднее. Поскольку при восстановлении боргидридом в молекулы белка не вводится никаких новых атомов серы, этот метод расщепления дисульфидных связей обладает некоторыми преимуществами перед восстановлением тиоловыми соединениями. Кроме того, образовавшиеся после восстановления боргидридом меркаптогруппы можно алкилировать для устранения возможности обратного превращения их в дисульфидные. В этом случае нет необходимости в применении большого избытка алкилирующего агента, поскольку боргидрид с ним не реагирует. Дисульфидные связи шерсти были полностью восстановлены боргидридом натрия [279], а затем алкилированы иодуксусной кислотой. Протекание реакции по предлагаемой схеме подтверждается результатом анализа на содержание цистина в модифицированном продукте, которое было равно 5 цмолъ/г по сравнению с 470 1моль/г в исходной шерсти. При восстановлении боргидридом натрия может происходить расщепление пептидных связей, а также рацемизация, что ограничивает возможности применения этого реагента [263]. [c.407]

    Полное восстановление мочевиной или гуанидином всех дисульфидных связей в отдельных цепях, а также обработка гидразином при pH 10 в условиях, при которых происходит расщепление эфирных связей, не вызывает уменьшения молекулярного веса. Следовательно, фракции А и Б представляют собой отдельные пептидные цепи ИгГ, если только они не состоят из меньших цепей, соединенных неизвестными устойчивыми межценочеч-ными связями. [c.103]

    I и II. Это позволяет предположить, что при гидролизе папаином, во время которого фермент активируется цистеином, происходит восстановление дисульфидной связи наряду с разрывом пептидных связей. Этот факт подтвердили Себра и сотр. [25], использовав для гидролиза нерастворимый папаин, полученный путем присоединения к папаину аминокислотного сополимера. Было показано, что при гидролизе ИгГ кролика предварительно активированным нерастворимым папаином не происходит изменения молекулярного веса. Однако если продукт гидролиза восстанавливать цистеином, то при последующем расщеплении образуются фрагменты I, II и III. Это показывает, что I и II соединены дисульфидной связью, а III остается присоединенным нековалентной связью до тех пор, пока I и II не будут отделены. [c.104]

    Дисульфидные связи расщепляют путем окисления, восстановления, с ПОМОЩЬЮ реакций нуклеофильного замещения (НЗОз , ВН4 , Н ) [40, 106] (см. также гл. 2). При окислении 5—5-связей образуются два остатка цистеиновой кислоты [160]. Дополнительные сульфогруппы придают молекуле белка заметную гидрофильность, повышая его растворимость в воде, в особенности в области низких pH. Однако окисление дисуль-фидных связей сопровождается модификацией других аминокислот и частичным гидролизом лабильных пептидных связей. Поэтому для введения сульфогруппы предпочитают проводить восстановительное расщепление дисульфидных связей, а затем мягкое окисление 5Н-групп реагентами ряда сультопов (внутренних сложных эфиров сульфокислот) (см. разд. 1.5.1.2 и [c.64]

    Дисульфидные связи можно восстанавливать с помощью других реагентов однако эти методы не находят применения в аналитической химии белка. Например, восстановление борогидридом натрия (при pH 7—10) сопровождается расщеплением пептидных связей [35] при реакции с дибораном идет восстановление карбоксильных групп (в виде карбоксилат-иона) в гидроксильные [5, 6]. В принципе диборапами можно восстанавливать белки с непротонированпыми карбоксильными группами. Редко в химии белка применяется электролитическое восстановление на ртутном капельном электроде [27, 111]. [c.86]

    В реакции окислительного расщепления пептидной связи тирозина N-иодосукцинимид столь же эффективен, как и N-бромо-сукцинимид. Реакцию проводят при pH 4,5, выход на модельных соединениях и простых тирозинсодержащих пептидах составляет 25—95%. Механизм реакции идентичен расщеплению с помощью N-бромосукцинимидом [100]. Показано, что пептидная связь тирозина расщепляется с умеренным выходом при электролитическом окислении на платиновом электроде. При этом в отличие от реакции с N-бромосукцинимидом не наблюдается расщепления по триптофану и гистидину однако идет окисление других функциональных групп (имидазоль-иых, тиоэфирных, дисульфидных и аминогрупп), правда с меньшей скоростью, чем фенольных групп тирозина. С помощью этого метода были специфически фрагментированы по остатку тирозина ангиотензин, инсулин и рибонуклеаза [30]. [c.118]

    Многие новосинтезированные полипептиды не активны до тех пор, пока от них не будут удалены определенные аминокислотные остатки. Эта ситуация особенно показательна в случае пептидных гормонов. Например, предшественником инсулина является длинный полипептид с тремя дисульфидными мостиками. Гормон становится активным только после удаления середины и начала пепт ида. Две оставшиеся части, удерживаемые дисульфидными связями, составляют активную молекулу (рис. 14.25). В случае АКТГ-эндорфина несколько небольших пептидных гормоЕюв синтезируются в виде одного предшественника (рис. 14.26). Этот полипептид может быть расщеплен с образованием адренокортикотропного гормона (АКТГ). у-липо-тропина (у-ЛТГ) и Р-эндорфина. Последующий про- [c.219]

Рис. 8.32. Структура протромбина. В результате расщепления двух пептидных связей (Аг -274— ТЬг-275 и Аг -323—Пе-324) образуется тромбин. Красным показан отщепляемый N-кoн-цевой фрагмент протромбина, в котором локализованы все остатки у-карбоксиглутамата. А- и В-цепи тромбина соединены дисульфидной связью. Рис. 8.32. Структура протромбина. В <a href="/info/116236">результате расщепления</a> <a href="/info/1696521">двух</a> <a href="/info/7320">пептидных связей</a> (Аг -274— ТЬг-275 и Аг -323—Пе-324) образуется тромбин. Красным показан отщепляемый N-кoн-цевой фрагмент протромбина, в котором локализованы все остатки у-карбоксиглутамата. А- и В-цепи тромбина соединены дисульфидной связью.
    На этой схеме указаны связи, расщепляемые протеиназой. Две дополнительные амидные группы находятся у карбоксильных групп двухосновных кислот, не участвующих в образовании пептидной связи. Два цистеиновых звена в окисленном пептиде образовались при расщеплении образующей цикл дисульфидной группы цистина. [c.695]

    Пролин и оксипролин полностью устойчивы к действию фермента.- Цистеин в продуктах расщепления не был обнаружен. Полуцистин, если он присутствует в продуктах расщепления, мог образоваться за счет разрыва пептидной связи при этом связь с полипептидной цепью дисульфидным мостиком сохраняется. Окисление остатков цистина в цистеиновую кислоту не должно давать способную отщепляться под действием карбоксипептидазы группу, так как она содержит заряженную боковую цепь, но восстановление и алкилирование до --S H2 ONH2-rpynn приводят к образованию нейтрального остатка. Такой остаток был недавно обнаружен [198] в гидроЛизатах, полученных при действии карбоксипептидазы на восстановленный и алкилированный пролактин, что свидетельствует о присутствия С-концевого полуцисти нового остатка. [c.233]

    Примером использования ионообменной хроматографии для изучения свойств ферментов может служить работа Таниуши и сотр. [203]. Нуклеаза стафилококка представляет собой фермент, 149 аминокислот которого связаны в единую пептидную цепь без дисульфидных мостиков. Этот свободный фермент легко расщепляется различными протеазами, вызывающими его дезактивацию и деградацию на пептиды и аминокислоты. В присутствии лиганда дезокситимидин-3, 5-дифосфата (рс1Тр) и ионов Са + значительно повышается устойчивость фермента по отношению к денатурации и уменьшается степень его расщепления протеазами. Термолизин вовсе не расщепляет этот фермент, а трипсин, химотрипсин и субтилизин расщепляют его [c.318]

    Многие полипептиды и белки синтезируются в виде цепей, имеющих большее число аминокислотных остатков, чем конечные функционально-активные структуры, присутствующие в клетке или секретируемые в кровь и другие жидкости организма. Так называемый процессинг этого предшественника с образованием более короткого белка осуществляется с участием ряда протеолитических ферментов. Здесь будет приведено лишь несколько примеров таких превращений, более подробная информация представлена в последующих главах. Один из примеров зимогенов (неактивных предшественников протеолитических ферментов) —трипсиноген, который при гидролизе одной пептидной связи превращается в активный фермент — трипсин (гл. 8). Фибриноген представляет собой растворимый белок плазмы крови, превращающийся в результате протеолиза в нерастворимый фибрин кровяных сгустков, предохраняющих организм от больших потерь крови при поражении кровеносных сосудов (гл. 29). Проинсулин, состоящий из одной полипептидной цепи с внутримолекулярными дисульфидными мостиками, в результате протеолиза дает активный инсулин, состоящий из двух пептидных цепей и образующийся за счет выщеплепия внутреннего пептидного сегмента из полипептидной цепи предшественника (гл. 46). Наконец, состоящий из трех цепей нерастворимый фибриллярный белок, коллаген, образуется в результате протеолитического расщепления предшественников, имеющих более длинные аминокислотные последовательности (с дополнительными пептидными сегментами в NH2- и СООН-концевых частях), чем цепи коллагена (гл. 38). Эти примеры иллюстрируют также возможные пути участия протеаз в контроле биологических процессов. [c.200]


Смотреть страницы где упоминается термин Расщепление пептидных и дисульфидных связей: [c.251]    [c.251]    [c.119]    [c.125]    [c.306]    [c.405]   
Смотреть главы в:

Химические реакции полимеров Том 1 -> Расщепление пептидных и дисульфидных связей




ПОИСК





Смотрите так же термины и статьи:

Пептидные связи

Расщепление связей



© 2025 chem21.info Реклама на сайте