Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептидные и полинуклеотидные цепи

    Мы сразу же поняли, что строение ДНК может оказаться более сложным, чем строение а-спирали. В а-спирали одна полипептидная цепь (последовательность аминокислот) сворачивается в спираль, удерживаемую водородными связями между группами этой же цепи. Морис, однако, сказал Фрэнсису, что диаметр молекулы ДНК больше, чем это было бы, если бы она состояла только из одной полинуклеотидной цепи (последовательности нуклеотидов). Это навело его на мысль, что молекула ДНК представляет собой сложную спираль, состоящую из нескольких полинуклеотидных цепей, завернутых одна вокруг другой. В этом случае всерьез приниматься за построение модели можно было, только решив заранее, как соединены эти цепи друг с другом водородными свя- [c.37]


    ДНК-полимераза I состоит из одного полипептида длиной 911 аминокислотных остатков (а. а.) (Air=102 000 D). Этот фермент отличается от прочих ДНК-полимераз Е. соИ наличием З -экзонуклеазной активности. Фактически ДНК-полимераза I — это два фермента на одной полипептидной цепи ограниченный протеолиз расщепляет эту ДНК-полимеразу на большой и малый фрагменты с разными активностями. Большой субфрагмент ДНК-полимеразы I (называемый также ДНК-полимеразой Кленова или фрагментом Кленова) обладает полимеризующей и З -экзонуклеазной (корректирующей) активностями. Малый субфрагмент несет З -экзонуклеазную активность, 5 -экзонуклеаза ДНК-полимеразы I действует на 5 -конец полинуклеотидной цепи только в составе дуплекса и отщепляет от него как моно-, так и олигонуклеотиды. Направление действия 5 -экзонуклеазы совпадает с направлением полимеризации новой цепи ДНК, т. е. в ходе полимеризации экзонуклеаза расчищает дорогу для полимеразы (рис. 29). Подобные свойства ДНК-полимеразы I соответствуют ее функциям в клетке эта полимераза удаляет различного рода дефекты из ДНК в ходе репарации и служит вспомогательной поли- [c.48]

    Синтезируемые на молекулах ДНК (на ядерных структурах) информационные РНК также поступают в рибосомы. Сборка полипептидных цепей происходит в рибосомах на молекулах и-РНК- Процесс этот, по-видимому, происходит следующим образом. Аминоацил-РНК располагается на и-РНК, удерживаясь за счет водородных связей, а аминогруппа аминоацильного остатка связывается с полинуклеотидной цепью и-РНК и является как бы якорем . Затем к и-РНК за счет водородных связей присоединяется вторая аминоацил-РНК, ее аминокислотный остаток связывается с первым, а первая молекула т-РНК отщепляется  [c.523]

    После того как аминокислотные остатки расположились на полинуклеотидной цепи РНК в определенной последовательности (или по мере такого расположения), происходит перегруппировка, заключающаяся в разрыве ангидридных связей и образовании пептидных. Таким образом, на РНК синтезируется полипептидная цепь белка со специфическим порядком аминокислотных остатков, соответствующим определенному строению данной РНК. [c.571]

    Кодом, определяющим включение аминокислот в полипептидную цепь, служит триплет оснований в полинуклеотидной цепи ДНК. [c.170]

    Работа Чаргаффа открыла возможность сформулировать теорию, объясняющую, каким образом ДНК может осуществлять перенос генетической информации в опыте с трансформацией. Теперь уже невозможно установить, кто фактически первый высказал эти идеи. Теория появилась после 1950 г. и была окончательно принята многими молекулярными генетиками уже к 1952 г. Основное положение этой теории сводилось к следующему если молекула ДНК содержит генетическую информацию, то последняя определяется не чем иным, как специфической последовательностью четырех нуклеотидных оснований в полинуклеотидной цепи. Иными словами, молекула ДНК — это апериодический кристалл Шредингера, в котором четыре основания — это то небольшое число изомерных элементов , чья точная последовательность представляет наследственный код (см. гл. I). Но поскольку информация, содержащаяся в генах (как было показано в гл. V), должна определять последовательность аминокислот в полипептидной цепи, нетрудно было сообразить, что смысл наличия в ДНК последовательностей из четырех нуклеотидных оснований, составляющих ген, состоит в том, чтобы определять последовательность аминокислот белковой молекулы, синтез которой контролируется этим геном. Такое представление давало возможность объяснить мутации на молекулярном уровне — как изменение в последовательности нуклеотидов в ДНК. [c.163]


    Следовательно на начальных стадиях эволюции, когда еще не возникли сложные механизмы обеспечения опосредованного соответствия полинуклеотидного и полипептидных синтезов, должна существовать прямая связь между последовательностью нуклеотидов и синтезом полипептидных цепей. Отсюда следует, что полинуклеотидная цепь должна непосредственно влиять на последовательность аминокислот и скорость синтеза полипептидной цепи [c.50]

    Итак, исходя из общих эволюционных соображений, следует,, что такая связь — непосредственный, избирательный катализ образования полипептидной цепи на полинуклеотидной цепи — должна была иметь место. Иначе не может начаться эволюционное совершенствование белков, не способных к самостоятельному матричному воспроизведению и, значит, к самостоятельному участию в процессе эволюции. [c.51]

    Вернемся, однако, к начальным стадиям эволюции [388]. На начальных этапах эволюции вовсе не требуется строгого однозначного соответствия нуклеотидов и аминокислот. Конфигурации белковых макромолекул грубо определяются не строго однозначной аминокислотной последовательностью, а лишь порядком чередования в полипептидной цепи полярных и неполярных аминокислотных радикалов. Исходя из этого, все аминокислоты можно разделить на два класса — полярные и неполярные. Может быть, полярные аминокислоты следует в свою очередь разделить на отрицательно и положительно заряженные в водных растворах — тогда будет три класса. Таким образом, в начале эволюции было бы достаточно, чтобы одни нуклеотидные радикалы в полинуклеотидной цепи непосредственно кодировали связывание полярных аминокислот, а другие — неполярных. Здесь следует отметить работу М. В. Волькенштейна [55], обнаружившего корреляцию между нуклеотидным составом кодирующих триплетов (кодонов) и полярностью кодируемых ими аминокислот. Волькенштейн обратил внимание на то, что во всех случаях, когда второй нуклеотид в кодоне — аденин, кодируемый аминокислотный остаток полярен, во всех случаях, когда второй нуклеотид — уридин, аминокислотный остаток неполярен. Я думаю, что мы имеем здесь дело с корреляцией, обусловленной физико-химическими особенностями непосредственного взаимодействия аминокислот и нуклеотидов, действовавшей в древнейшие времена, когда современный перевод нуклеотидного языка в аминокислотный еще не сформировался. Сам Волькенштейн рассматривает эту корреляцию как приспособление, повышающее помехоустойчивость кода если в результате мутации изменится кодон, то велика вероятность того, что вместо одной, например, неполярной аминокислоты в кодируемом белке появится другая, но также неполярная. Конфигурация макромолекулы от этого изменится не очень сильно, и мутант не погибнет. Мне же кажется, что в ходе эволюции такая корреляция могла возник- [c.53]

    Возможные способы регулирования ферментативной активности. В понятие совершенства функционирования катализаторов входит и совершенство изменения скоростей биохимических процессов. Поскольку их скорости определяются в основном наличием и активностью соответствующих ферментов, регулирование биохимических процессов может идти двумя путями регулированием синтеза ферментов, т. е. регулированием преобразования генетической информации, записанной в полинуклеотидных цепях, в последовательность аминокислот в полипептидных цепях белков —ферментов и регулированием активности уже синтезированных ферментов. Оба эти пути —предмет многочисленных исследований и им посвящены фундаментальные работы и обзоры [На, 25, 33, 42, 56, 89, 90, 176, 211, 245, 257, 258, 302, 310]. [c.76]

    Первичный источник энергии в биохимической эволюции. Вслед за В. П. Скулачевым [266] можно считать наиболее вероятным источником энергии во времена возникновения жизни свет. Этот вывод означает допущение первичности фотосинтеза, возникновения его в самом начале совершенствования систем энергетических превращений в биологических системах. Конечно же, речь не идет о процессе, подобном современному фотосинтезу. Ясно, что только избирательное поглощение излучения способно обеспечить энергией лишь определенные процессы, а не все реакции, как, например, при нагревании. В процессах, идущих в первичных матричных структурах, существование такой избирательности вполне вероятно. Для нуклеиновых оснований характерно сильное поглощение в области 260 нм, что соответствует (в расчете на 1 моль) порции энергии около 100 ккал. Это, конечно, слишком много, но для начала эволюционного совершенствования вполне терпимо. Основной результат поглощения света с такой длиной волны полинуклеотидными цепями — разрыв валентных связей [154], например, отрыв нуклеинового основания от рибозы, замена одного основания на другое. Вследствие интенсивных мутаций и обусловленных ими вариаций последовательности аминокислот в полипептидной цепи происходил отбор катализаторов, способствующих синтезу пигментов, которые поглощают видимое и ближнее инфракрасное излучение, соответствующее нужным квантам энергии. [c.105]

    На рис. 6.1 схематически изображена полинуклеотидная цепь. Повторяющаяся единица цепи содержит шесть скелетных связей и боковую группу — основание, присоединенное к атому С рибозы. На рис. 3.1 приведены структурные формулы обычных и многих минорных оснований и указаны системы нумерации атомов для пуриновых и пиримидиновых нуклеозидов. При сопоставлении полинуклеотидного остова с полипептидным, изображенным иа рис. 5.1, становится очевидным, насколько полинуклеотидная цепь сложнее по своему строению, чем полипептидная. [c.287]


    Полипептидные и полинуклеотидные цепи [c.12]

    Очевидно, что размеры молекул связаны с их массами, но отнюдь не целиком ими определяются. Это особенно важно учитывать в случае макромолекул, размеры которых могут существенно зависеть от плотности упаковки полипептидной или полинуклеотидной цепи. В ограничении свободы диффузии через пространственнук сетку пор внутри гранул немалую роль может играть и форма молекулы. Очевидно, что сферическая глобула будет диффундировать иначе, чем молекула такого же объема, но вытянутая в виде палочки. [c.7]

    Сказанное только что родилось иэ скромного, не имевшего серьезной аргументации предположения Меклера о стереокомплементарности аминокислоты с антиаминокислотой. Затем, отнюдь не в результате прямых экспериментальных и теоретических исследований, а с помощью лишь одной силлогистики, оно последовательно, как бы само собой, стало превращаться в постулат, принцип, открытие, закон, фундамент всей биологии, смысл и цель Жизни и, наконец, в нечто такое, что не имеет еще научного названия. Подобных обобщений не знала не только биология, но и физика и химия на протяжении всей истории естественных наук. Поэтому велико желание убедиться в соответствии декларируемых Меклером и Идлис идей действительному положению дел и справедливости такой высочайшей самооценки авторами их умозаключений. Именно "умозаключений", а не результатов экспериментальных и теоретических разработок механизмов свертывания полипептидных и полинуклеотидных цепей, их взаимодействий, трехмерных структур и конформационных свойств белков. Об этом можно судить по следующей фразе Меклера и Идлис в работе 1993 г. "Считаем необходимым еще раз подчеркнуть, что общий стереохимический генетический код не придуман ad ho , не сформулирован "по аналогии", а выведен логически, в результате экстраполяции вниз - до самого низшего уровня организации биологических систем - закономерностей взаимного узнавания и связывания друг с другом элементарных структур иерархии биологических организмов и систем последующих уровней их организации органов, тканей, клеток, субклеточных структур, биополимеров и, наконец, мономеров, из которых эти биополимеры построены" [352. С. 41]. Открытия кода Н-Н и Т-кода потребовали, как известно, диаметрально противоположного направления поиска. [c.532]

    Инициация в процессе биосинтеза белка означает не просто начало элонгации. Прежде всего, так как начало кодирующей последовательности мРНК не совпадает с началом полинуклеотидной цепи, а всегда находится, отступя от ее 5 -конца (иногда на значительное расстояние), необходимо точное узнавание первого кодона на внутренней части цепи. Это узнавание определяет не только начало полипептидной цепи, которая синтезируется, но и задает фазу всего дальнейшего считывания мРНК по триплетам, т. е. абсолютно критично для всей аминокислотной последовательности полипептида. Другими словами, именно инициация определяет фиксированную точку на матричном полинуклеотиде, с которой начинается отсчет триплетов без запятых (см. гл. А.П). [c.221]

    Остов полипептидной цепи может образовывать спиральные структуры с параметрами, близкими к двойной спирали ДНК в В- и 4-формах. Как показали конформационные расчеты н построение молекулярных моделей, стереохимически возможны два типа спиральных структур, одна из которых (/) имитирует структуру повторяющихся Г -метилпирролкарбоксамидных единиц дистамицина, а вторая (g) представляет собой регулярную спираль, в которой карбонильные группы остова могут образовывать водородные связи с 2-аминогруппами гуанина, находящимися в одной и той же полинуклеотидной цепи (рис. 8.18). Две антипараллельные, И или tg, пептидные цепи можно расположить в узкой бороздке таким образом, что образуются водородные связи между пептидными группами двух цепей и ос-Еованиями ДНК. Этот структурный мотив был обнаружен экспериментально. [c.292]

    Сама полинуклеотидная цепь не имеет какой-либо резко предночтительпой конформации, поскольку между ее атомами не существует таких специфичных взаимодействий, как в полипептидной цепи в а-сч1иралц или в / -слоях. Определяющее значение для ее конформации имеют взаимодействия гетероци 1-1.4ичсских [c.93]

    В большом числе случаев для функционирования белков и нуклеиновых кислот необходимо, чтобы несколько полимерных цепей были соединены в единый комплекс. В Случае чисто белковых образований такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц. Субъединичная структура белков часто фигурирует в научной литературе как четвертичная структура, т.е. как уровень организации, следующий за третичной структурой. Нуклеиновые кислоты с комплементарными последовательностями нуклеотидов образуют двуспиральные структуры. При определенных структурных особенностях могут образовываться и структуры, содержащие три цепи,— тре.хспиральные структуры. Наконец, многие функционально значимые образования содержат как белки, так и нуклеиновые кислоты такие образования называют нуклеопротеидами. В основе образования нуклеопротеидов лежат высокоспецифичные взаимодействия между соответствующими полипептидными и полинуклеотидными цепями, т.е. способность молекул биополимеров к взаимному узнаванию. [c.102]

    Белки и нуклеиновые кислоты при всем их неисчерпаемом многообразии построены из стандартных наборов соответствующих мономеров. Поэтому установление первичной структуры сводится преимущественно к выяснению, в каком порядке эти мономеры располагаются вдоль полипептидной или полинуклеотидной цепи. Эту задачу часто называют секвенированием (от англ. sequen e — последовательность). [c.269]

    Направление считывания мРНК — считывание генетического текста в процессе биосинтеза полипептидной цепи белка, начиная с 5 -конца полинуклеотидной цепи и кончая З -концом. Например, если в качестве матричной РНК в бесклеточной белоксинтезирующей системе используется гексануклеотид, А—А—А—У—У—У, то ос-новнмм продуктом реакции является дипептид Лиз—Фе. А когда в качестве мРНК используются полинуклеотиды со структурой А—А—А......А—А—Ц, то среди продуктов обнаруживаются олигопептиды со структурой Лиз—Лиз—Лиз.....Лиз—Асп [c.61]

    Нарушения биосинтеза гемоглобина вследствие изменения в генетическом материале. Незначительное изменение генетического материала, например замена нуклеотида или изменение чередования двух нуклеотидов в полинуклеотидной цепи того или другого гена, приводит к замене аминокислоты в полипептидной цепи, синтез которой он контролирует. Так возникают аномальные гемоглобины. По-видимому, некоторые генные локусы особенно чувствительны к таким изменениям. Изменения в одном и том же локусе р-гена, например, приводит к замене в положении 6 Р-цепи глутаминовой кислоты валином (НЬ S) или лизином (НЬ С). Незначительное изменение генетического материала приводит к значительным последствиям для организма. НЬ S отличается от НЬА только одной аминокислотой, но он очень плохо растворим в воде при малых давлениях кислорода. Вследствие этого он образует кристаллоидные структуры (тактоиды), которые сильно искажают мембрану эритроцитов. Эритроциты, содержащие НЬ S, при малых давлениях кислорода часто имеют вид серпов, поэтому болезнь, возникающая вследствие замены гемоглобина А гемоглобином S, получила название серповидноклеточной анемии. Для возникновения болезни необходимо, чтобы лицо было гомозиготным по гену НЬ S, т. е. оба Р-гена были генами Р . Организм вырабатывает при этом а-цепи и р -цепи  [c.146]

    Синтез полипептидной цепи на рибосоме. Для начала синтеза полипептидной цепи необходимы следующие условия рибосома должна связываться с и-РНК или заменяющим ее матричным полинуклеотидом в окружающей среде должны присутствовать аминоацилированные т-РНК и белковые факторы (р1р2) трансляции и ГТФ, а также ионы Mg + и К или NH + в определенной концентрации. При соблюдении этих условий рибосома может начать синтез. Полинуклеотидная цепь и-РНК, подобно ленте на [c.281]

    Вторая из догм, представляющая собой новейший вариант теории один ген — один фермент, опиралась на представления о роли белковой структуры. Согласно этой догме, информационное содержание любого гена, а следовательно, и истинное значение четырехбуквенной записи в ДНК не может быть ничем иным, как изображением первичной структуры данного полипептида. Вместе взятые, обе догмы подразумевали, что роль любой определенной последовательности пурин-пиримидиновых оснований полинуклеотидных цепей ДНК, которая и составляет ген, сводится к тому, чтобы определять последовательность аминокислот в какой-то определенной полипептидной цепи. Так летом 1953 г. зародилась идея о существовании генетического кода, связывающего последовательность нуклеотидов в полинуклеотидах с последовательностью аминокислот в полипептидах. Путем простых рассуждений вскоре легко пришли к выводу, что код этот должен быть до предела прост для каждого аминокислотного остатка в полипептидной цепи должна существовать информация, которая определяет, какая из двадцати стандартьых аминокислот должна находиться в данной точке полипептидной цепи. Совершенно очевидно, что соотношения один к одному между пуриновыми и пиримидиновыми основаниями в ДНК и аминокислотами в полипептиде быть не может, поскольку каждое из четырех оснований. А, Г, Ц и Т, могло бы определять только одну из четырех, но не одну из двадцати аминокислот. Не может быть и так, чтобы каждый аминокислотный остаток детерминировался двумя смежными парами оснований, так как в этом случае четыре основания могли бы кодировать не более чем 16 видов различных аминокислот (4-4 = 16). Следовательно, код должен быть таким, чтобы каждый аминокислотный остаток детерминировался по меньшей мере тремя парами оснований, расположенных в полинуклеотидных цепях ДНК, вероятно последовательно. В этом случае четыре типа оснований, сгруппированные по три, могут определять более чем достаточное число (4.4.4 = 64) различных видов аминокислот. [c.185]

    После того как в гл. УП было рассказано об открытии Эйвери, установившего, что трансформирующий фактор бактерий представляет собой не что иное, как ДНК, все дальнейшее изложение велось на основе молекулярного взгляда на ген как на полинуклеотидную цепь, последовательность оснований которой определяет с помощью генетического кода последовательность аминокислот в полипептидной цепи. Однако такая точка зрения вовсе не обязательна для объяснения большинства нз рассмотренных до сих пор опытов по мутациям и генетическим рекомбинациям у бактерий и их вирусов. Все эти опыты можно почти так же хорошо объяснить с классической точки зрения о неделимом гене, определяющем один фермент. Сейчас мы рассмотрим работу, заполнившую наконец тот разрыв, который существовал между выводами, основанными исключительно на данных формальной генетики с использованием различий признаков, с одной стороны, и чисто химическими исследованиями на уровне нуклеотидных последовательностей — с другой. [c.304]

    В первых опытах Мишера по выделению нуклеина из клеток гноя, проведенных около века назад, было установлено, что в ядрах эукариотов отрицательно заряженная ДНК находится в комплексе с примерно равным по массе количеством положительно заряженных основных белков. В своей работе, проведенной в начале века, Коссель установил не только природу химических компонентов ДНК, но также выяснил состав связанных с ДНК основных белков. Из этих белков наиболее важное значение имеют гистоны, которые представляют собой полипептидные цепи длиной от 50 до 200 аминокислотных остатков. Положительный заряд ги-стонов обусловлен высоким содержанием в них трех основных аминокислот аргинина, лизина и гистидина, в боковых цепях которых имеется вторая аминогруппа (фиг. 15) па их долю приходится почти 25% всех аминокислот гистонов. Интересно сравнить высокое содержание основных аминокислот в гистонах с данными об аминокислотном составе различных белков, представленными в табл. 2, из которых видно, что основные аминокислоты составляют лишь от 8 до 12% всех аминокислотных остатков таких белков, как р-галактозидаза, А-полипептид триптофан-синтазы Е. oli и бычий инсулин. Взаимодействие между ДНК и гистонами в хромосоме происходит, вероятно, благодаря образованию ионных связей между фосфатными группами полинуклеотидной цепи и боковыми аминогруппами полипептидной цепи. На долю ДНК и гистонов приходится около 3 всей массы большинства хромосом остальную часть обычно относят на счет негистонных белков и РНК. [c.498]

    Структуру пептидов принято изображать, начиная с К-концевой аминокислоты с нее же начинается и нумерация аминокислотных остатков, что соответствует направлению синтеза полипептидной цепи на рибосомах в процессе трансляции, которое отвечает направлению 5 3 полинуклеотидной цепи мРНК (см. главу 12). При этом аминокислотные остатки обозначаются символами (трех- или однобуквенными), например для следующего гексапептида  [c.54]

    По-видимому, наиболее важным открытием из сделанных когда-либо в биологии было установление того факта, что рассмотренный выше или какой-либо другой процесс копирования уже существуюш их белковых цепей вообще не протекает в организме и что информация о последовательности аминокислот в молекулах ферментов хранится в хромосомах и используется (но терминологии, применяющейся в вычислительной технике) для программирования в белоксиитезирующих системах (рибосомах), обеспечивая правильное воспроизведение последовательности аминокислот. Эта программа хранится не в виде аминокислотной последовательности полипептидных цепей и не в какой-либо иной форме, имеющей прямое структурное или химическое сходство с рассматриваемой аминокислотой, а в виде кода, записанного на лентах нуклеиновой кислоты, при этом каждой аминокислоте соответствует определенное, состоящее из трех букв, кодовое слово (кодон), которое по своей химической структуре не имеет ничего общего с данной аминокислотой. Таким образом, последовательность аминокислот в полипептидной цепи фермента закодирована в виде последовательности нуклеотидов в полинуклеотидной цепи нуклеиновой кислоты. Буквы кодона не следует понимать как некие символы, записанные на бумаге, они представлены пуриновыми или пиримидиновыми основаниями. Записывая нуклеотидные последовательности, принято обозначать нуклеотиды первыми буквами их химического названия например, кодон для метионина представляет собой последовательность из трех нуклеотидов— аденина, урацила и гуанина — и записывается AUG. Информация о последовательности аминокислот в белках хранится в хромосомах, точнее, в молекуле дезоксирибонуклеиновой кислоты (ДНК). Последняя отличается от рибонуклеиновой кислоты (РНК) тем, что содержит восстановленный сахар (дезоксирибозу) и метилированные урациловые группы (иногда бывают метилированы и другие основания). [c.6]

    Химические реакции, избирательный катализ которых необходим для обеспечения должной скорости синтеза матричных копий данного вида, сложны и разнообразны. Соответственно сложными и разнообразными должны быть функциональные свойства ферментов. Требованиям относительно большой реакционной способности, возможности существования в виде полимерных нитчатых молекул отвечают аминокислоты и их полимеры — белки. К тому же, как мы видели, аминокислоты и полипептиды легко возникают спонтанно в планетных условиях. Удовлетворимся земным опытом и будем считать разнообразие из 20 аминокислот достаточным для обеспечения всех свойств ферментов. Главным для нас в данном контексте является вопрос о способе сопряжения синтезов двух полимерных систем — полинуклеотидной и полиаминокислотной (полипептидной). Необходимо, чтобы последовательность аминокислот в полипептидной цепи определялась последовательностью нуклеотидов в полинуклеотидной цепи. Если наличие образующего в результате такого соответствия фермента способствует большей скорости матричного воспроизведения нуклеотидной последовательности данного вида, то и количество этого фермента тоже увеличивается быстрее. [c.50]

    В. Г. Туманяна, А. С. Заседателева, А. Л. Жузе, С. Л. Гроховского и Б. П. Готтиха. Код, управляющий специфическим связыванием регуляторных белков с ДНК, и структура стереоспецифиче-ских участков регуляторных белков [79]. Как ясно из заглавия статьи, в 1ней расшифровал второй биологический код, выяснен механизм однозначного соответствия полинуклеотидных и полипептидных цепей в процессах узнавания. Механизм узнавания основан на специфическом взаимодействии двух двойных спиралей— нуклеотидной и полипептидной [371]. Регуляторные белки узнают последовательность оснований в двойной спирали ДНК не расплетая ее. Узнавание основано на пространственном соответствии контактных, связывающих друг с другом группировок в полипептидных и полинуклеотидных спиралях. Оно аналогично специфическому совпадению отверстий в двух налагаемых друг на друга перфокартах. Такой способ установления однозначного соответствия авторы называют решеточным принципом узнавания. В качестве контактных групп в нуклеотидных цепях функционируют или гуанин, или цитозин, ТИМИН и аденин, а в полипептидных цепях — только атомы азота амидных групп полипептидного остова. Амидные азоты связываются посредством водородных связей с контактными группами полинуклеотидных цепей. С гуанином способны образовывать водородные связи атомы амидного азота полипептидной цепи нх конформация рассчитана авторами и она оказалась отличной от конформации полипептидной цепи, способной взаимодействовать с тимином. Такие конформационно различные полипептидные цепи называются соответственно g- и /-цепями. Оказалось, что эти две анти-параллельные полипептидные цепи, находящиеся в и/-конформациях, могут соединяться в полипептидную двойную спираль водородными связями, образующими между амидными группами двух цепей, не взаимодействующими с основаниями ДНК. [c.60]

    Группа Летсингера и Клотца разработала недавно метод синтеза иеитидов с использованием матриц этот метод напоминает природный механизм синтеза на рибосомах (рис. 2.1). В методе используются полимерный носитель и полинуклеотидная матрица, но отсутствует необходимость, как и в природных системах, временно защищать аминокислоты для образования правильных связей. Такой подход назван методом комплементарного носителя (рис. 2.5). Растущая полипептидная цепь связана концевой карбоксильной группой с 5 -ОН-группой олигонуклеотида эфирной связью. Новая поступающая аминокислота также присоединена эфирной связью, но с З -ОН-групной второго олигонуклеотида. [c.65]


Смотреть страницы где упоминается термин Полипептидные и полинуклеотидные цепи: [c.386]    [c.461]    [c.298]    [c.109]    [c.276]    [c.70]    [c.569]    [c.171]    [c.209]    [c.396]    [c.359]    [c.51]    [c.212]    [c.212]   
Смотреть главы в:

Физическая Биохимия -> Полипептидные и полинуклеотидные цепи




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи



© 2025 chem21.info Реклама на сайте