Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептидная карбонильная образование

    Об использовании экзопептидаз, таких как аминопептидаза и карбоксипептидаза, для определения аминокислотной последовательности вблизи N- и С-концов белков говорилось в разд. 23.3.4. Эндопептидазы являются протеолитическими ферментами, которые избирательно расщепляют пептидные связи в точках, удален ных от концов белковой молекулы. Эндопептидазы сильно различаются по своей специфичности. Обычно сами аминокислотные остатки с любой стороны расщепляющейся пептидной связи являются наиболее важными детерминантами специфичности протеолитических ферментов. Так, трипсин разрывает пептидные связи, в образовании которых участвует карбонильная группа остатков Arg или Lys схемы (25), (26) . [c.274]


    Белковая цепь приобретает чрезвычайную устойчивость, сворачиваясь в правостороннюю а-спираль (рис. 21-17). В такой структуре аминокислотные остатки направлены наружу от оси спирали, а группы С=0 одного витка спирали связаны с группами Н—N следующего витка водородными связями. Водородные связи образуются между сильно электроотрицательными атомами, например Р или О, и атомами водорода с небольшим локальным избытком положительного заряда. Такие связи имеют главным образом электростатическое происхождение и зависят от способности двух атомов к тесному сближению. Атомы О и Р, имеющие небольшие размеры, способны давать такие связи более крупные атомы О обычно не могут образовать водородных связей. В белках водородные связи играют очень важную роль они возникают между кислородным атомом карбонильной группы и атомом водорода аминогруппы, принадлежащими полипептидной цепи. Как видно из рис. 21-13, частично двоесвязный характер пептидной связи С—N не только обеспечивает плоскостность пептидного звена, но также делает атом кислорода несколько отрицательным, а атом азота с присоединенным к нему атомом водорода несколько положительными. Это и создает благоприятные условия для образования водородных связей. [c.316]

    Особенно ощутимые успехи в исследовании движущих сил ферментативного катализа были достигнуты в случае химотрипсина . Химотрипсин — это эндопептидаза, которая в белках расщепляет пептидные связи, образованные карбонильной группой фенилаланина, тирозина и триптофана [4, 5]  [c.126]

    Карбоксигруппа охотно присоединяется к катиону, после чего происходит образование смешанного ангидрида. Последний в свою очередь реагирует с аминогруппой второй аминокислоты с образованием пептидной связи. Кроме того, образующийся таким образом смешанный ангидрид не накапливается в растворе (его образование лимитирует скорость всего процесса), а сразу атакуется амином. Поэтому образования азлактона не происходит и не происходит существенной рацемизации в процессе полипептидного синтеза. Образовавшийся смешанный ангидрид атакуется второй аминокислотой лишь по одной из двух карбонильных групп с образованием диоксида углерода и этанола в качестве побочных продуктов. Причина такого поведения обсуждалась ранее (см, образование пептидной связи через ангидриды кислот). [c.86]

    Четкие результаты для большого числа белков, играющих жизненно важную биологическую роль, связанную с их нерастворимостью и механическими свойствами, были получены с помощью дифракции рентгеновских лучей, и эти результаты являются примером раннего использования техники, которая в последующее время была усовершенствована настолько, что с ее помощью были установлены полные структуры ряда кристаллических глобулярных белков. Растянутая или р-форма кератина демонстрирует пример р-слоев как с параллельным, так и с антипараллельным расположением пептидных цепей (см. рис. 23.7.4). Так, в фиброине щелка найдено только параллельное расположение этих цепей с близким к планарному расположением слоев, тогда как в кератине имеет место складчатая структура. Нерастянутая или а-форма кератина является примером а-спирали в ее наиболее компактной форме, в которой пять оборотов правой спирали включают 18 остатков аминокислот — следовательно, система может быть описана как спиральная конформация с шагом в 3,6 остатка. Из рассмотрения молекулярных моделей видно, что предпочтительна правая спиральность, поскольку по сравнению с положением в левой спирали полипептида, образованного из остатков -аминокислот, боковые радикалы в правой спирали располагаются наружу от оси спирали, так что дестабилизирующие отталкивания, затрагивающие, в частности, карбонильные группы, сводятся к минимуму (см. рис. 23.7.3). [c.428]


    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]

    До сих пор ничего не говорилось о специфичности ферментов. Если трипсин, химотрипсин и эластаза обладают идентичным каталитическим механизмом, то чем они отличаются друг от друга Ответ заключается в том, что они селективны к характеру боковой цепи, следующей за той, в которой они разрывают пептидную связь. В уравнениях (21-1)-(21-3) соответствующие радикалы обозначены К и находятся непосредственно перед карбонильной группой связи, подлежащей разрыву. Каждый из трех рассматриваемых ферментов имеет на своей поверхности карман специфичности , в который входит указанный радикал при связывании субстрата. Этот карман специфичности в трипсине длинный и глубокий, с отрицательным зарядом на дне от ионизованной аспарагиновой кислоты (рис. 21-19, а). Благодаря этому трипсин благоприятствует разрыву белковой пептидной цепи по связи, следующей за положительно заряженными радикалами лизина или аргинина. В химотри тсине карман специфичности шире (рис. 21-19, б) и образован исключительно гидрофобными радикалами, поэтому химотрипсин благоприятствует разрыву пептидной связи, следующей за объемистым ароматическим радикалом, как, например, [c.322]

    В то же самое время, при образовании связи между сериновым кислородом и карбонильным углеродом, происходит ослабление связи между карбонильным углеродом и амидным азотом, и этому ослаблению способствует наличие поблизости атома водорода, ранее принадлежавшего сери-ну, а теперь связанного с азотом гистидина. Когда пептидная связь, N—С, разрывается, этот атом водорода присоединяется к азоту, завершая образование группы —НН2 на конце удаляющейся цепочки, которая на стадии 4 обозначена как продукт 1. Половина цепи субстрата теперь отщепляется, а другая половина остается присоединенной к сериновой боковой цепи фермента. Конфигурация связей вокруг карбонильного атома углерода снова становится плоской тригональной и среди них снова имеется двойная связь С=0. [c.320]

    На основе рентгеноструктурных, спектроскопических и химических данных (см. обзор в [537]) предложен возможный механизм действия химотрипсина (рис. 11.1). После того как фермент и субстрат образовали комплекс Михаэлиса (разд. 10.2), атом кислорода гидроксильной группы остатка 5ег-195 атакует карбонильный атом углерода расщепляемой связи субстрата. Образуется неустойчивый тетраэдрический промежуточный продукт [735]. Эта реакция облегчается системой передачи заряда [628, 736], которая осуществляет передачу протона от гидроксильной группы остатка 5ег-195, превращая его тем самым в сильный нуклеофил. Затем Н з-57 подает протон атому азота расщепляемой пептидной связи, в результате чего связь расщепляется. На этой стадии аминная часть образует водородную связь с остатком Н з-57, тогда как ацильная группа присоединяется к 5ег-195 с образованием эфирной связи. На этом завершается стадия ацилирования гидролитической реакции. [c.275]

    В первом приближении можно рассматривать Д-складки как плоские структуры (рис. 17). Стабилизируются они в первую очередь водородными связями, образованными между двумя такими фрагментами карбонильными атомами кислорода одного и амидным атомом азота второго фрагмента. При этом взаимодействующие фрагменты могут, как видно из рис. 17, иметь либо параллельную, либо антипараллельную ориентации. При этом плоские пептидные фрагменты образу- [c.84]


    Любая реакция, приводящая к образованию пептидной связи, протекает по механизму присоединения-отщепления, причем сначала аминогруппа атакует положительна згф -женный атом углерода карбонильной группы второй аминокислоты  [c.351]

    НОЙ группы участвуют в образовании водородной связи карбонильный кислород любого данного остатка соединен водородной связью с амидным азотом четвертого по счету остатка (считая вдоль пептидной цени назад). Таким образом, повторяющиеся элементы структуры, связанные водородными связями, могут быть представлены следующим образом  [c.101]

    Значительное внимание уделялось исследованию возможных способов расположения пептидных цепей, приводящих к устойчивым конформациям. В 1958 г. Л. Полинг показал, что наиболее выгодным расположением, которое осуществляется во многих пептидах и белках, является а-спираль. Пептидные цепи а-спирали свернуты таким образом, что возможно образование водородных связей между амидными водородными атомами и карбонильными группами, разделенными четырьмя аминокислотными фрагментами (рис. 80). Водородные связи почти параллельны основной оси спирали, а расстояние между витками составляет около 5,5 А. Боковые цепи аминокислот лежат на внешней стороне а-спирали. Однако пространственные затруднения, возникающие между боковыми группами некоторых аминокислот, могут существенно деформировать нормальную а-спираль и вызвать изгиб цепи. Наиболее существенно в этом отношении влияние пролина и оксипролина. [c.386]

    Сотни пептидных (амидных) связей и карбонильных групп белковых молекул делают возможным образование сотен водородных связей. Хотя одна водородная связь значительно слабее ковалентной связи, все вместе они обладают высокой прочностью (фиг. 86). Водородные связи в белках иногда сравнивают с застежкой-молнией . [c.321]

    Значительное внимание было уделено исследованию возможных способов расположения пептидных цепей, приводящих к устойчивым конформациям. В 1958 г. Л. Полинг показал, что наиболее выгодным расположением, которое осуществляется во многих пептидах и бейках, является а-спираль. Главная особенность а-спирали заключается в том, что пептидные цепи свернуты таким образом, что возможно образование водородных связей между амидными водородными атомами и карбонильными группами, разделенными четырьмя пептидными связями (рис. 63). Водородные связи почти параллельны основной оси спирали, а расстояние между витками составляет около 5,5 А. [c.359]

    Однако определенные несимметричные ангидриды типа R 00Y [прц V = Р СО, Р КСО, Р ЗОг, (Р 0)2Р0] находят применение (особенно при получении пептидов [19,20]), так как высокая электронная плотность V направляет реакцию по карбонильной группе, удаленной от заместителя У. В синтезах используют также смешанный ангидрид, получаемый из уксусного ангидрида и муравьиной кислоты этот ангидрид избирательно взаимодействует с аминами по формильному углероду, с образованием формамидов [21]. Этот реагент используется также для формилирования аминогруппы аминокислот перед пептидным синтезом [19,, 22]. Циклические ангидриды, такие как фталевый или янтарный, также реагируют с аммиаком или аминами [4, 23, 24], давая после раскрытия кольца моноамид дикарбоновой кислоты (амидовую кислоту) схема (7), стадия (а) . Для выделения амидовой кислоты необходимо тщательно контролировать условия во избежание циклизации в имид схема (7), стадия (б) . И действительно, эта реакция является одним из главных методов синтеза имидов (см. разд. 9.9.1.8). [c.393]

    Пептидные связи, образованные триптофаном, разрываются Л -бромсукцинимидом несколько хуже аналогичная реакция протекает по остаткам тирозина. В обоих случаях бромирование сопровождается нуклеофильной атакой карбонильного кислорода с образованием спиролактона и бромид-иона схемы (23) и (24) . [c.273]

    Основываясь на своих собственных исследованиях модельных соединений, Бреслоу предложил второй механизм гидролиза пептидов карбоксипептидазой А, не включающий образования ацил-ферментного промежуточного соединения [221, 222]. По существу, в гидролизе пептидной связи участвуют ион цинка, карбоксильный ион и гидроксильная группа тирозина. 2п(П) ио-прежнему играет роль кислоты Льюиса, координируя карбонильный кислород, а карбоксильная группа действует скорее как общее основание. Это мож но утверждать, поскольку в присутствии СН3ОН (вместо воды) метанолиз пептидного субстрата не наблюдался из-за неблагоприятной константы равновесия. Таким образом, фермент не может включать метанол в переходное состояние (в реакции, катализируемой в обоих направлениях) ни в случае эфирных, ни в случае пептидных субстратов. Это означает, что для протекания гидролиза необходимо удаление в переходном состоянии обоих протонов молекулы воды. [c.348]

    Для получения смешанных ангидридов (СА) пригодны как карбоновые, так и неорганические кислоты. Многочисленные методические разработки и применяемые кислоты можно найти в обзоре [237]. Большая часть теоретически и методически очень интересных разработок (в силу различных причин) не нашла практического применения. Наиболее часто используют алкиловые эфиры хлормуравьиной (хлоругольной) кислоты, особенно предложенный Виландом и Бернардом [238] и независимо от них Буассона [239] этиловый эфир хлормуравьиной кислоты, а также изобутиловый эфир хлормуравьиной кислоты [240]. Взаимодействие несимметричного смешанного ангидрида, полученного из карбоксикомпонента и алкилового эфира хлормуравьиной кислоты (рис. 2-7), с аминокомпонентом зависит от электронной плотности на обоих конкурирующих С-атомах карбонильных групп, а также от стерических эффектов и, как правило, проходит по карбонилу ациламинокислоты с образованием желаемого пептидного производного и освобождением второй кислоты (алкилугольной) (путь а). Последняя при использовании алкилхлорформиатов (R — этил или изобутил) очень неустойчива и сразу разлагается на СО2 и соответствующий спирт. Правда, известны также примеры воздействия аминокомпонента на карбонил угольной кислоты [241, 242], причем освобождается ациламинокислота и в качестве побочного продукта получается уретан (путь б). Как показал Виланд, эту побочную реакцию нельзя полностью исключить даже при температуре реакции —15 °С. Указанная побочная реакция протекает обычно при использовании N-тозил-, N-тритил- и N-трифтораце- [c.141]

    Имеющиеся в работе [22] данные об образовании мочевиной связей К-Н(0). . . 0=С свидетельствуют о том, что это кристаллическое вещество является более эффективным акцептором, чем донором протонов. Т.е. гидрофильность пептидной связи обусловлена, главным образом, электронными свойствами атома карбонильного кислорода, а не амидной ЫН-группой. Эти выводы находятся в согласии с результатами тензиметрических исследований [23] и квантово-механических расчетов [19, 24] взаимодействий в системах амид-вода. [c.117]

    Существенный вклад в распределение электронной плотности пептидной группы цвиттер-ионной формы (II) должен сказаться в увеличении отрицательного заряда на карбонильном кислороде (по сравнению с ацетоном), что и подтверждается результатами расчета интенсивностей ИК-полос поглощения (см. табл. П.З и II.6). Это полностью согласуется также с таким известным экспериментальным фактором, как предпочтительное протонирование амидов и пептидов по атому кислорода [41], а не азота, как это обычно имеет место. Амиды являются слабыми основаниями значения рКа, например, у ацетамида и N-метилацетамида составляют соответственно 0,35 и 1,0. В то же время они могут выступать и как слабъ е кислоты, рЕа кислотной диссоциации у формамида равно 17,2, а у ацетамида - 17,6 [42]. В соответствии с этим пептидная группа проявляет двойственную способность к образованию водородных связей, выступая одновременно в качестве акцептора протона (С=0) и его донора (N-H)-Образование водородных связей ведет к еще большей поляризации групп, [c.150]

    Поскольку аминолиз низших алкиловых и ациловых эфиров протекает слишком медленно, подобная активация карбоксильной компоненты в пептидном синтезе не достаточна. Исключением является легкое образование дикетопнперазинов при циклизации ди-пептидных эфиров (см. с. 380), ускоренное крайне благоприятным пространственным фактором. Для осуществления быстрой бимолекулярной реакции необходимо увеличение электрофильного характера сложноэфирной карбонильной группы. Обычно это достигается введением электроотрицательного заместителя в алкильную или арильную сложноэфирную функцию. Типичным примером такого рода являются цианометиловый (84) [71] н п-нитрофениловый эфиры (85) [72, 73]. Большей реакционноспособностью обладают сложные эфиры тиолов, например (86) [73, 74], и многие особые структуры, прежде всего производные 0-ацилгидроксиламина, например (87) [69]. [c.395]

Рис.3.13. Обмен мидными протонами и структурные свойства. Скорости обмена к в BPTI, измерение которых проводилось прн pH - 3.6 и Т - Зб С, сопоставляются с величинами, характеризующими способность пептидниых связей к контакту с молекулой воды н способность к образованию водородных мостиковых связей. Образование водородных связей рассматривается по отношению к карбонильному кислороду основной цепи ( ), или к атомам боковых цепей, илн же к молекулам воды, которые подходят к внутренней поверхности цепи (Q ). (СО - область СС-спнрали, ф) - областьу5-свернутого листа [3.51] Рис.3.13. Обмен мидными протонами и <a href="/info/1590302">структурные свойства</a>. Скорости обмена к в BPTI, измерение которых проводилось прн pH - 3.6 и Т - Зб С, сопоставляются с величинами, характеризующими способность <a href="/info/7320">пептидниых связей</a> к контакту с <a href="/info/197765">молекулой воды</a> н способность к образованию <a href="/info/131574">водородных мостиковых связей</a>. <a href="/info/157125">Образование водородных связей</a> рассматривается по отношению к карбонильному кислороду <a href="/info/56559">основной цепи</a> ( ), или к атомам <a href="/info/168742">боковых цепей</a>, илн же к <a href="/info/197765">молекулам воды</a>, которые подходят к <a href="/info/142012">внутренней поверхности</a> цепи (Q ). (СО - область СС-спнрали, ф) - областьу5-свернутого листа [3.51]
    Следовательно, по аналогии с результатами для диеновых полимеров, превращение гомополипептида в сополимер может быть, в принципе, осуществлено изомеризацией звеньев из одной конфигурации в другую. Эта изомеризация должна включать поворот вокруг связи между карбонильным углеродом и азотом и может быть осуществлена с помощью некоторых химических реакций. В частности, такое превращение вполне возможно, если реакция включает образование переходной структуры, в которой частично двойной характер пептидных связей утрачивается лищь временно. В других случаях опредленные реакции , такие как специфическое связывание некоторых ионов, могут способствовать стабилизации одной из двух резонансных структур. Отдельные пептидные связи могут при этом терять свой частично двойной характер. В этом случае восстановление двойного характера связей потребует осуществления обратной реакции. Развивается ли геометрический изомеризм или пептидные связи приобретают характер простых, термодинамическая стабильность кристаллического состояния, по сравнению с жидким состоянием, существенно понижается. [c.103]

    Вторичная структура определяется упорядоченным расположением гибких пептидных цепей, возникающим за счет образования водородных связей между карбонильным кислородом и амидным азотом данной полипентидной цепи [c.85]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]

    Между карбонильными и имидными группами пептидной цепи возникают водородные связи >С = О...Н — N<, что и приводит к пространственной конформации, т. е. к образованию вторичной структуры белка. Основной конфигурацией является а-спираль, в которой водородные связи соединяют NH-rpynny одной пептидной связи с СО-группой другой связи, находящейся от первой связи на один виток спирали. [c.13]

    Конформация полипептида в растворе частично определяется прямым взаимодействием пептидных групп друг с другом. То обстоятельство, что синтетические по-липептидй имеют высокорегулярную, кристаллическую структуру, тогда как многие другие- полимеры аморфны, т. е. обладают структурой беспорядочного клубка, в принципе свидетельствует о наличии некой естественной конформации для полипептидов. Результаты тщательной оценки длины связей и валентных углов, основанной на размерах, установленных для планарных пептидных связей в кристаллах небольших пептидов, существенно ограничили число возможных моделей конформации полипептидов. Дальнейшие ограничения в выборе возможной конформации были связаны с тем, что, согласно исходным предположениям, каждая карбонильная и каждая амидная группа пептида участвует в образовании водородной связи и что конформация полипептида должна соответствовать минимальной энергии вращения вокруг одинарной связи. Этим требованиям для пептидов, в которых имеются внутримолекулярные связи, отвечала правая спираль, содержащая 3,6 аминокислотных остатка на один виток (так называемая а-спираль) [1].. Существование спиральных структур предсказанных размеров в синтетических полипептидах было подтверждено с помощью самых различных физических методов, в том числе и методом рентгеноструктурного анализа. Такая а-спираль, в которой каждая пептидная группа соединена водородной связью с третьей от нее пептидной группой, считается наиболее вероятной моделью отдельных участков остова молекулы глобулярных белков, к которым относятся и ферменты. Нужно подчеркнуть, однако, что конформация глобулярного белка в целом отличается от простой регулярной а-спиральной структуры из-за наличия, в белке дисульфидных связей и остатков пролина, которые нарушают спиральное строение и изменяют ориентацию цепи, а также из-за взаимодействия боковых цепей, ответственного за третичную структуру. Действительно, рентгеноструктурный анализ с высоким разре- [c.25]


Смотреть страницы где упоминается термин Пептидная карбонильная образование: [c.592]    [c.749]    [c.285]    [c.263]    [c.345]    [c.138]    [c.189]    [c.195]    [c.248]    [c.150]    [c.68]    [c.248]    [c.10]    [c.73]    [c.23]    [c.170]    [c.270]    [c.99]    [c.290]   
Биохимия Том 3 (1980) -- [ c.49 , c.88 , c.234 ]




ПОИСК







© 2024 chem21.info Реклама на сайте