Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биореакторы кислорода

    В большинстве аэробных биореакторов кислород поступает в культуральную среду из пузырьков воздуха, диспергированных в ней в этом случае необходимо оценить скорость массо- передачи кислорода в единице объема, и уравнение (77) принимает следующий вид  [c.441]

    Биореактор. Аппараты для проведения процессов культивирования микроорганизмов — биореакторы — можно рассматривать как технические системы, предназначенные для преобразования необходимых материальных и энергетических потоков в процессе роста и размножения клеток. Биохимические реакторы представляют собой основное технологическое оборудование, элементы схемы производства в целом, а эффективность их функционирования определяет в основном технико-экономические показатели биотехнологической системы. Многообразие форм конструктивного оформления биореакторов определяется технологическими и микробиологическими требованиями осуществляемого процесса ферментации. Так, схема на рис. 1.4 иллюстрирует различные процессы микробиологического синтеза, осуществляемые в промышленных биореакторах, а также основные условия их проведения. В биореакторе необходимо поддержание заданной температуры культивирования 1, давления Р, pH среды, окислительно-восстановительного потенциала еН, уровня растворенного кислорода Со времени ферментации т и концентрации лимитирующего субстрата 5. Для обеспечения заданных физико-химических параметров протекания процесса в биореакторе должны быть выдержаны необходимые условия тепло- и массообмена, аэрации среды и режима гидродинамического перемешивания. Рассмотренные на схеме процессы осуществляются в результате глубинного культивирования микроорганизмов в условиях аэрации и перемешивания среды. Известны также биореакторы для осуществления процесса путем поверхностного культивирования клеток с использованием микробиологических пленок и флокул, а также биореакторы для процессов с иммобилизованными на носителях ферментами [22]. [c.12]


    Согласно развиваемому системному подходу к анализу сложной совокупности процессов на микро- и макроуровнях, к эффектам, определяющим поведение системы на макроуровне, относится массопередача. Массообменные процессы в биореакторе непосредственно влияют на рост микроорганизмов, определяя скорость транспорта питательных веществ к клеткам и отвод продуктов метаболизма в среду в количестве, соответствующем стехиометрическим коэффициентам. Наибольший практический интерес, с точки зрения ограничения скорости процесса ферментации, представляют такие элементы питания, как кислород и углеродсодержащий субстрат, учитывая большую удельную потребность в них клеток, низкую растворимость в культуральной жидкости и присутствие в ферментационной среде в виде дисперсных фаз. [c.87]

    Эффективен для оценки массообмена в биореакторах на ферментационных средах с микроорганизмами. Необходим малоинерционный датчик измерения растворенного кислорода [c.93]

    В зависимости от режима перемешивания газовой фазы в биореакторе средняя движущая сила процесса массопередачи кислорода будет выражаться [c.140]

    Теперь зависимость для расчета стеиени использования кислорода в биореакторе идеального перемешивания будет иметь вид [c.144]

    Особенности моделирования колонных биореакторов заключаются в необходимости учета существенного влияния структуры жидкостных и газовых потоков на характер распределения концентраций микроорганизмов, субстрата и растворенного кислорода по высоте колонны. В целом математическая модель формируется согласно ранее рассмотренной схеме на рнс. 3.3 и включает следующие основные блоки гидродинамики, массообмена и кинетики. Конструктивное разнообразие колонных биореакторов обусловливает применение различных моделей структуры потоков, описывающих ситуацию, соответствующую либо режиму вытеснения, либо ячеечной схеме потоков, либо диффузионной модели [5, 19, 22]. [c.156]

    Для решения системы уравнений модели эффективно применение метода сведения краевой задачи к задаче Каши. При этом система уравнений решается методом Хемминга. Некоторые результаты расчета колонного биореактора на основе данной модели приведены на рис. 3.23. Модель предполагает рост микробных клеток в нелимитируемых по кислороду условиях, т. е. с учетом соотношения [c.157]

    Секционированные колонные биореакторы. Применение секционированных по высоте колонных биореакторов для процессов биотехнологии связано с целым рядом преимуществ этих аппаратов возможностью организации заданной структуры газожидкостных потоков возможностью осуществления многостадийного процесса культивирования микроорганизмов высокой интенсивностью перемешивания среды п транспорта кислорода к клеткам. Известно [c.160]


    Путем варьирования в заданном диапазоне изменения параметров величинами т, 5о, Я, р, Гц рк, - О, с учетом заданных ограничений осуществляется поиск оптимальных или частных значений или общего критерия оптимальности. В результате расчета определяются режимные и технологические параметры работы биореактора, включая характер распределения субстрата, биомассы и кислорода по секциям, энергетические и конструктивные характеристики. [c.216]

    Эффективность работы биореактора достигается при интенсивном массообмене. Это стало возможным из-за установки между кассетами перфорированной трубы, через которую постоянно подается воздух с постоянным расходом, который одновременно обеспечивает наличие в воде необходимого для процесса растворенного кислорода [43]. [c.283]

    Е. соИ и многие другие микроорганизмы, которые используются для экспрессии чужеродных белков, обычно растут только в присутствии кислорода. К сожалению, растворимость кислорода в водных средах ограничена, а по мере увеличения плотности культуры содержание растворенного кислорода в культуральной среде быстро падает. Более того, поскольку кислород растворяется очень медленно, эту проблему нельзя рещить простым продуванием через среду воздуха или кислорода даже при интенсивном перемешивании. При уменьшении концентрации кислорода экспоненциальный рост замедляется и культура медленно переходит в стационарную фазу, характеризующуюся другим метаболическим статусом. Одним из последствий этого является образование в клетках протеиназ, которые могут расщеплять белок-мишень. Проблему аэрации культуральной среды пытались решить разными способами изменением конструкции биореактора, повышением интенсивности продувания воздуха и перемешивания, добавлением в среду веществ, увеличивающих растворимость кислорода. Все это, однако, не привело ни к каким ощутимым результатам. [c.122]

    Независимо от типа биореактора в ходе ферментации необходимо строго контролировать такие параметры, как концентрация растворенного кислорода, pH, температура и интенсивность перемешивания. Слишком сильное изменение любого из них может существенно снизить скорость роста клеток и стабильность белкового продукта. [c.354]

    Для крупномасштабного культивирования рекомбинантных микроорганизмов в промыщленных биореакторах (>1000 л) недостаточно просто экстраполировать условия роста в лабораторных ферментерах (0,1—1,0 л). При конструировании промышленных биореакторов необходимо учитывать такие параметры, как температура, pH, скорость и характер перемешивания, потребность аэробных организмов в кислороде, количество питательных веществ. [c.367]

    При проектировании сооружений биохимической очистки сточных вод и анализе их работы обычно используют следующие расчетные параметры скорость биологического окисления, стехиометрические коэффициенты для акцепторов электронов, скорость роста и физические свойства биомассы активного ила. Изучение химических изменений во взаимосвязи с биологическими превращениями, происходящими в биореакторе, дает возможность получить достаточно полное представление о работе сооружения. Для анаэробных систем, к которым можно отнести анаэробные фильтры, такие сведения нужны, чтобы обеспечить оптимальное значение pH среды, являющегося основным фактором нормальной работы очистных сооружений. В некоторых аэробных системах, например, в таких, в которых происходит нитрификация, контроль pH среды также необходим для обеспечения оптимальной скорости роста микроорганизмов. Для закрытых очистных сооружений, вошедших в практику в конце 60-х годов, в которых используется чистый кислород (окси-тенк), изучение химических взаимодействий стало необходимым не только для регулирования pH, но и для инженерного расчета газопроводного оборудования. [c.331]

    Если говорить о других условиях среды, то совершенно очевидно, что наиболее пригодны для использования в промышленности микроорганизмы с широкими диапазонами оптимумов pH, концентрации растворенного кислорода и температуры. Впрочем, частично эти трудности позволяют обойти техническое усовершенствование установок и улучшение контроля за условиями в них. Отметим, однако, что в некоторых новых конструкциях промышленных биореакторов, в частности в колонных аппаратах и в циклических системах под давлением, создаются значительные градиенты как физических параметров, так и концентраций питательных веществ. Если экономические преимущества подобных систем над более привычными достаточно велики, то для достижения высокой экономичности процесса в целом крайне важно, чтобы в нем принимали участие микроорганизмы, сохраняющие высокую продуктивность в быстро меняющихся условиях. [c.416]

    Один из методов повышения производительности биореакторов в технологии биосинтеза связан с так называемым "высокоплотностным культивированием" микроорганизмов, которое реализуется при проведении процесса по специальной программе с подпиткой субстратом в периодическом режиме культивирования [24]. Это повышает концентрацию клеток микроорганизмов в среде культивирования и при поддержании неизменной удельной скорости биосинтеза общую производительность биореактора. Однако такой процесс требует тщательного выдерживания необходимых параметров биосинтеза (прежде всего текущей концентрации органического субстрата и концентрации растворенного кислорода, а также pH и содержания минеральных компонентов питания). Кроме того, питательные субстраты должны подаваться в биореактор в концентрированном виде. Процесс с подпиткой был бы одним из наилучших решений при биологическом обезвреживании концентрированных токсичных стоков и отходов, поскольку он может привести не только к увеличению производительности биореактора, но и к уменьшению объема вторичных стоков и отходов со стадии биологической очистки, Однако применительно к переработке токсичных соединений возможности тфоцесса с подпиткой резко ограничиваются из-за образования побочных продуктов метаболизма, ингибирующих процесс окисления. Так, в наших экспериментах в обычными консорциумами фенолдеструкторов ингибирование окисления в режиме с [c.235]


    В течение всего опыта в биореактор вносили фенол порциями по 0,5-5,0 г/л. Процесс окисления осуществляли при не очень интенсивном перемешивании среды в биореакторе, так что потребление фенола можно было легко определить по падению текущей концентрации растеоренного кислорода в ферментационной среде, а возрастание р02 свидетельствовало об исчерпании фенола и необходимости внесения его новых порций. Одновременно в первые от начала опыта 1000 ч вносили Н2О2 в виде 50%-го [c.236]

    При проведении процессов культивирования микроорганизмов в биореакторах с интенсивной аэрацией и перемешиванием среды, обеспечивающих высокую скорость сорбции кислорода, концентрация его в культуральной жидкости может превышать критическую для данной культуры ( i,> Скрит). В ЭТИХ УСЛОВИЯХ удельная скорость роста микроорганизмов не будет зависеть от концентрации кислорода в среде, и кинетика роста определится соотношением р,= л(5). Используя в качестве кинетического соотношения модель Моно—Иерусалимского, получим следующую систему уравнений  [c.141]

    Рассмотрим далее пример модели колонного биореактора, описываемого диффузионной моделью, с учетом лимитирующего влияния на процесс ферментации концентрации растворенного кислорода. В этом случае на характер распределения рабочей концентрации кислорода в бпореакторе колонного типа оказывают влияние структура жидкостного и газового потоков, скорость транспорта кислорода из газа в жидкость, скорость утилизации кнсло- [c.158]

    Результаты изменения текунцих концентраций биомассы, субстрата и растворенного кислорода но секциям колонного биореактора в зависимости от величины обратного потока иллюстрирует график на рис. 3.25, в. [c.163]

    Широко распространен класс биореакторов с пневматическим перемешиванием среды. Так, в аппарате Лефрансуа—Марийе объемом 320 м , разработанном во Франции в 1960 г., перемешивание и аэрация среды обеспечиваются за счет направленной подачи аэрирующего газа (воздуха) в нижнюю часть аппарата. Концен-трично аэрационной трубе расположен центральный диффузор. Питательная среда по трубе поступает в зону распределения воздушного потока, где смешивается с массой жидкости, поднимающейся вверх через диффузор с газовыми пузырями. Интенсивность газожидкостного взаимодействия данного аппарата невелика. Расчетная величина скорости сорбции кислорода не превышает 1,0—1,3 кг Ог/м ч. Однако к преимуществу аппарата следует отнести простоту и надежность конструкции, малые эксплуатационные расходы. [c.198]

    В этом отношении более эффективными являются биореакторы с механическим перемешиванием среды. Разработано большое число конструкций аппаратов с механическими мешалками различного типа. Аэрация среды в аппарате обеспечивается за счет нагнетания воздуха и его диспергирования мешалкой. Для организации лучшей циркуляции среды мешалку размещают в диффузоре. Объем апиарата с одним перемешивающим устройством определяется мощностью привода и условиями равномерного рас-нределения диссипируемой энергии и достигает до 300 м , а скорость сорбции кислорода до 10—12 кг 02/(мЗ- ч) [12]. [c.202]

    Хорошо известны бнореакторы с механическим перемешивающим устройством типа ультрамикс и мультистаг , разрабатываемые фирмой Хеман . Применение многоступенчатой мешалки и перфорированного центрального диффузора в аппарате создает хорошие условия для равномерного диспергирования подаваемого газа во всем биореакторе. Высокая удельная энергия на перемешивание (6—8 кВт/м ) обеспечивает интенсивную турбулизацию среды и массопередачу кислорода в системе газ—жидкость— клетка. Производительность такого аппарата объемом 300 м прн выращивании дрожжей на углеводородном субстрате составит до 15—20 т биомассы в сутки. [c.202]

    Широкое распространение в последние годы получили колонные биореакторы, секционированные по высоте тарелками различных конструкций. По сравнению с эрлифтнымн системами в таких аппаратах достигается более высокая скорость массопередачи кислорода за счет многократного взаимодействия газа и жидкости на тарелках. Движение газового и жидкого потоков может быть прямоточным нлн протнвоточным. [c.206]

    Гидродинамическая структура жидкостного потока в колонном биореакторе может соответствовать идеальному перемешиванию при наличии контура циркуляции, или приближаться к идеальному вытеснению при прямоточном взаимодействии барботируемого газа и питательной среды, что позволяет применять эти аппараты для широкого класса процессов культивирования аэробных микроорганизмов [20]. Необходимая величина скорости сорбции кислорода, с учетом потребления кислорода микроорганизмами, достигается в основном расходом газовой фазы и относительной скоростью движения газового и жидкостного потоков. В работах [5, 12, 20] рассмотрены примеры использования секционированных колонных бнореакторов в процессах микробиологического синтеза. В многоступенчатом колонном биореакторе, состоящем из секций, разделенных перфорированными тарелками, подача субстрата осуществляется на нижнюю тарелку, а вывод суспензии микроорганизмов — сверху. Дополнительно к турбулизацин жидкости барботируемым газом в ряде аппаратов применяется механическое пере.мешнванпе за счет лопастных мешалок, находящихся в каждой секции колонны и помещенных на центральной оси. Движение жидкости и газа в ферментере обычно противоточное. За счет дополнительного механического перемешивания каждая секция колонны работает как ячейка полного смешения. [c.206]

    Другим частным критерием, учитывающим текущие эксплуатационные затраты на процесс в бпореакторе, принят критерий Фг. Данный критерий учитывает затраты, связанные с вводимой в биореактор внешней энергией, расходуемой на аэрацию, снабжение микроорганизмов кислородом и перемешивание (механическое, циркуляционное и т. д.) ферментационной среды. Отнеся суммарные энергозатраты к производительности бнореактора в непрерывном процессе, имеем [c.212]

    Все большее распространение для биологической очистки получают колонные биореакторы, позволяющие за счет гидравлического давления столба жидкости значительно улучшить условия снабжения кислородом микроорганизмов активного ила. Это в свою очередь приводит к заметной интенсификации процесса, снижению энергетических и эксплуатационных затрат. Так, по данным [23] при практически равных удельных капитальных затратах на 1 т БПКб для колонного (башенного) биореактора и традиционного бассейнового аэротенка удельные энергозатраты в первом случае почти в 2 раза ниже, что иллюстрируют приведенные в табл. 4.8 показатели. [c.236]

    Процессы глубинного культивирования аэробных микроорганизмов используются для получения пищевых добавок, витаминов, аминокислот и других продуктов. При непрерывном процессе культивирования используют емкостной биореактор с мешалкой. Скорость протекания процесса определяется кинетикой клеточного роста и скоростью массообмена на границе газ - жидкость. Рост микроорганизмов описывается мультршликативной зависимостью, учитывающей лимитирование субстратом и кислородом, растворенным в ферментационной жидкости. Математическая модель процесса при условии выращивания микроорганизмов одной популяции, идеального перемеошвания рабочей жидкости, постоянства экономических коэффициентов по кислороду и субстрату в безразмерных величинах записывается в виде системы трех нелинейных дифференциальных уравнений  [c.182]

    При интенсивном перемешивании культуральной среды в процессе ферментации часто происходит ее вспенивание. Это может привести к переувлажнению фильтра в отверстии, через которое воздух выходит из биореактора, и уменьшению его потока, а также к попаданию в реактор посторонних микроорганизмов. Для контроля пенообразования используют химические пеногасители или механические сбиватели пены. Однако в присутствии химических реагентов может ухудшаться перенос кислорода, а иногда происходить ингибирование клеточных ферментов, что уменьшает скорость роста микроорганизмов. Кроме того, если пеногасители не удалять, они могут загрязнять конечный продукт. Проблему вспенивания можно решить, если оставить в верхней части биореактора достаточно большое пустое пространство, в котором лопались бы пузырьки воздуха. Правда, в этом случае рабочий объем реактора уменьшится примерно на 25%. [c.358]

    Очень часто процесс получения растворов газов совмещается с микробиологическими, биохимическими и химическими процессами, в которых эти растворы используются. Процесс выращивания (культивирования) микроорганизмов в питательной среде, который проводится в биореакторах или ферментерах, сопровождается непрерывным растворением кислорода воздуха, который затем из раствора поглощается бактериями. В аэротенках биологических очистных сооружений с использованием кислорода воздуха проводят биохимическое окисление содержащихся в сточных водах органических веществ. В производствах продуктов основного органического синтеза распространены жидкофазные процессы окисления, гидрирования, аминирования, хлорирования, алкилирования, оксиэтилирования, кар-бонилирования и др., в которых первой стадией химического процесса является проводимый, как правило, под давлением процесс растворения соответственно О2, Н2, NH3, I2, С2Н4 или СзНб, С2Н4О, СО и др. Очень часто скорость растворения газов определяет (лимитирует) скорость всего химического процесса. [c.47]

    Биотехнологические процессы в связи с массообменом Принято считать, что диффузионные процессы, протекаюпще в биореакторах, не накладывают заметных ограничений на максимально проявляющуюся функциональную активность клеток и клеточных структур, главное при этом — поддержание массооб-мена (и прежде всего — кислорода в системе "газ-жидкость применительно к аэробным организмам) на оптимальном уровне При выращивании биообъекта в реакторе образуется сложная система массопереноса 02, а именно - "газ-жидкость-твердое тело", понимая под твердым телом биообъект Названная тройная система легко расчленяется на три самостоятельные системы "газ-жидкость", "жидкость-жидкость" и "жидкость-твердое тело" Это можно продемонстрировать следующим образом (рис 77) [c.261]

    Рнс 77 Системы образующиеся в биореакторе (8) при массопереносе кислорода (1) из среды (4) в клетку продуцент (5) 2 — невозмущаемый слой жидкости 3 — пограничная область рг1здела фаз газ жидкость б — пограничная область раздела фаз яСидкость твердое тело 7 — условный путь перемещения Ог в системе жцдкость жидкость от (1) до (5) где он расходуется в биохимических реакциях [c.262]

    Обычно при вполне благоприятном аэрировании среды концентрация клеток в биореакторе может достигать величины 10 /мл Исходя йз усредненцых размеров клеток бактерий по диаметру 1 мкм, дрожжей — 7 мкм, нитчатых грибов = 20 мкм объемы их в процентах к объему среды составят около 0,005, 1,8 и 2 соответственно, то есть бактериальная масса будет примерно в 400 раз меньше грибной массы Удельная поверхность ра здела всех клеток будет 3,1 см /см - для бактерий, 153 см /см - для дрожжей и 40 см /см — для нитчатых грибов Следовательно, эффективная поверхность в данных примерах будет больше у дрожжей Поэтому адекватная доставка кислорода — как лимитирующего фактора зависит от морфофункциональных особенностей культивируемого биообъекта и условий его выращивания [c.264]

    Сточные воды нефтяной промышленности обычно очищают биологическим способом после удаления большей части нефти физическими способами или С помощью- коагулянтов. Токсическое воздействие компонентов таких сточных вод на системы активного ила можно свести к минимуму путем постепенной акклиматизации очистной системы к повышенной скорости-поступления стоков и последующего поддержания скоростй потока и его состава на одном уровне. Однако загрузка этих систем может значительно варьировать и, видимо, лучше ис--пользовать более совершенные технологии, например системы с илом, аэрированным чистым кислородом, или же колонные биореакторы. [c.290]


Смотреть страницы где упоминается термин Биореакторы кислорода: [c.29]    [c.237]    [c.26]    [c.143]    [c.158]    [c.201]    [c.209]    [c.209]    [c.215]    [c.263]    [c.349]    [c.263]    [c.347]    [c.138]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.354 , c.356 ]




ПОИСК





Смотрите так же термины и статьи:

Биореакторы



© 2024 chem21.info Реклама на сайте